3,989
Views
16
CrossRef citations to date
0
Altmetric
Engineering and Structural Materials

Epitaxial La0.7Sr0.3MnO3 thin films on silicon with excellent magnetic and electric properties by combining physical and chemical methods

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 702-710 | Received 29 Jun 2018, Accepted 04 Sep 2018, Published online: 15 Oct 2018

References

  • Goodenough JB. Electronic and ionic transport properties and other physical aspects of perovskites. Rep Prog Phys. 2004;67(11):1915–1993.
  • Dagotto E , Hotta T , Moreo A. Colossal magnetoresistant materials: the key role of phase separation. Physics Report. 2001;344(1–3):1–153.
  • Von Helmolt, R. , Wecker J , Holzapfel B , et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys Rev Lett. 1993;71(14):2331–2333.
  • Ramirez AP . Colossal magnetoresistance. J Phys Condensed Matter. 1997;9(39):8171–8199.
  • Hwang, HY , Cheong SW , Ong NP , et al. Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3 . Phys Rev Lett. 1996;77(10):2041–2044.
  • Schiffer, P , Ramirez AP , Bao W , et al. Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3 . Phys Rev Lett. 1995;75(18):3336–3339.
  • Prellier W , Lecoeur P , Mercey B . Colossal-magnetoresistive manganite thin films. J Phys Condensed Matter. 2001;13(48):R915–R944.
  • Demkov AA , Posadas AB . Integration of functional oxides with semiconductors. New York: Springer, 2014.
  • Reiner JW , Kolpak AM , Segal Y , et al. Crystalline oxides on silicon. Adv Mater. 2010;22(26–27):2919–2938.
  • Baek SH , Eom CB . Epitaxial integration of perovskite-based multifunctional oxides on silicon. Acta Mater. 2013;61(8):2734–2750.
  • Vila-Fungueirino, JM , Bachelet R , Saint-Girons G , et al. Integration of functional complex oxide nanomaterials on silicon. Front Phys. 2015;3:12.
  • Schlom, DG , Chen LQ , Pan X , et al. A thin film approach to engineering functionality into oxides. J Am Ceramic Soc. 2008;91(8):2429–2454.
  • McKee RA , Walker FJ , Chisholm MF . Crystalline oxides on silicon: the first five monolayers. Phys Rev Lett. 1998;81(14):3014–3017.
  • Wang J , Zheng H , Ma Z , et al. Epitaxial BiFeO3 thin films on Si. Appl Phys Lett. 2004;85(13):2574–2576.
  • Baek SH , Park J , Kim DM , et al. Giant piezoelectricity on Si for hyperactive MEMS. Science. 2011;334(6058):958–961.
  • Abel S , Stöferle T , Marchiori C , et al. A strong electro-optically active lead-free ferroelectric integrated on silicon. Nat Commun. 2013;4.
  • Moalla R , Vilquin B , Saint-Girons G , et al. Huge gain in pyroelectric energy conversion through epitaxy for integrated self-powered nanodevices. Nano Energy. 2017;41:43–48.
  • Sánchez F , Aguiar R , Trtik V , et al. Epitaxial growth of SrTiO3 (00h), (00h), and (hhh) thin films on buffered Si(001). J Mater Res. 1998;13(6):1422–1425.
  • Narayan J , Larson BC . Domain epitaxy: a unified paradigm for thin film growth. J Appl Phys. 2003;93(1):278–285.
  • Tiwari A , Chug A , Jin C , et al. Integration of single crystal La0.7Sr0.3MnO3 films with Si(001). Solid State Commun. 2002;121(12):679–682.
  • Carretero-Genevrier A , Drisko GL , Grosso D , et al. Mesoscopically structured nanocrystalline metal oxide thin films. Nanoscale. 2014;6(23):14025–14043.
  • Xia Y , Whitesides GM . Soft lithography. Annu Rev Mater Sci. 1998;28(1):153–184.
  • Brinker CJ , Lu Y , Sellinger A , et al. Evaporation-induced self-assembly: nanostructures made easy. Advanced Mater. 1999;11(7):579–585.
  • Lange FF . Chemical solution routes to single-crystal thin films. Science. 1996;273(5277):903–909.
  • Schwartz RW , Schneller T , Waser R . Chemical solution deposition of electronic oxide films. Comptes Rendus Chimie. 2004;7(5):433–461.
  • Calzada ML , Bretos I , Jiménez R , et al. Low-temperature processing of ferroelectric thin films compatible with silicon integrated circuit technology. Advanced Mater. 2004;16(18):1620–1624.
  • Vila-Fungueiriño JM , Rivas-Murias B , Rivadulla F . Synthesis and magnetic properties of manganite thin films on Si by polymer assisted (PAD) and pulsed laser deposition (PLD). 2012 MRS Spring Meeting;. San Francisco, CA. 2012.
  • Carretero-Genevrier A , Gich M , Picas L , et al. Soft-chemistry-based routes to epitaxial α-quartz thin films with tunable textures. Science. 2013;340(6134):827–831.
  • Carretero-Genevrier A , Puig T , Obradors X , et al. Ferromagnetic 1D oxide nanostructures grown from chemical solutions in confined geometries. Chem Soc Rev. 2014;43(7):2042–2054.
  • Carretero-Genevrier A , Oro-Sole J , Gazquez J , et al. Direct monolithic integration of vertical single crystalline octahedral molecular sieve nanowires on silicon. Chem Mater. 2014;26(2):1019–1028.
  • Jia QX , McCleskey TM , Burrell AK , et al. Polymer-assisted deposition of metal-oxide films. Nat Mater. 2004;3(8):529–532.
  • Burrell AK , Mark McCleskey T , Jia QX . Polymer assisted deposition. Chem Communications. 2008;11:1271–1277.
  • Vila-Fungueirino JM , Rivas-Murias B , Rubio-Zuazo J , et al. Polymer assisted deposition of epitaxial oxide thin films. J Mater Chem C. 2018;6(15):3834–3844.
  • Vila-Fungueiriño JM , Rivas-Murias B , Rodríguez-González B , et al. Interface magnetic coupling in epitaxial bilayers of La0.92MnO3/LaCoO3 prepared by polymer-assisted deposition. Chem Mater. 2014;26(3):1480–1484.
  • Jain, M. , Hundley MF , Hawley M , et al. Magnetoresistance in polymer-assisted deposited Sr- and Ca-doped lanthanum manganite films. Appl Phys Lett. 2006;88(23):232510.
  • Jain M , Bauer E , Ronning F , et al. Mixed-valence perovskite thin films by polymer-assisted deposition. J Am Ceramic Soc. 2008;91(6):1858–1863.
  • Vila-Fungueiriño JM , Bui CT , Rivas-Murias B , et al. Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3 . J Phys D Appl Phys. 2016;49(31):315001.
  • Jain M , Shukla P , Li Y , et al. Manipulating magnetoresistance near room temperature in La0.67Sr0.33MnO3/La0.67Ca0.33MnO3 films prepared by polymer assisted deposition. Advanced Mater. 2006;18(20):2695–2698.
  • Lucas I , Vila-Fungueiriño JM , Jiménez-Cavero P , et al. Tunnel conduction in epitaxial bilayers of ferromagnetic LaCoO3/La2 / 3Sr1 / 3MnO3 deposited by a chemical solution method. ACS Appl Mater Interfaces. 2014;6(23):21279–21285.
  • Vila-Fungueiriño JM , Rivas-Murias B , Rodríguez-González B , et al. Room-temperature ferromagnetism in thin films of LaMnO3 deposited by a chemical method over large areas. ACS Appl Mater Interfaces. 2015;7(9):5410–5414.
  • Méchin L , Adamo C , Wu S , et al. Epitaxial La0.7Sr 0.3MnO3 thin films grown on SrTiO3 buffered silicon substrates by reactive molecular-beam epitaxy. Phys Status Solidia. 2012;209(6):1090–1095.
  • Le Bourdais D , Agnus G , Maroutian T , et al. Epitaxial manganite freestanding bridges for low power pressure sensors. J Appl Phys. 2015;118(12):124509.
  • Adamo, C , Méchin, L , Heeg, T , et al. Enhanced electrical and magnetic properties in La0.7Sr0.3MnO3 thin films deposited on CaTiO3-buffered silicon substrates. APL Materials. 2015;3(6):062504.
  • Saint-Girons G , Bachelet R , Moalla R , et al. Epitaxy of SrTiO3 on silicon: the knitting machine strategy. Chem Mater. 2016;28(15):5347–5355.
  • Delhaye, G , Merckling, C , El-Kazzi, M , et al. Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001). J Appl Phys. 2006;100(12):124109.
  • Park, JW , Baek, SH , Bark, CW , et al. Quasi-single-crystal (001) SrTiO3 templates on Si. Appl Phys Lett. 2009;95(6):061902.
  • Kawasaki M , Takahashi K , Maeda T , et al. Atomic control of the SrTiO3 crystal surface. Science. 1994;266(5190):1540–1542.
  • Qiao L , Zhang KHL , Bowden ME , et al. The impacts of cation stoichiometry and substrate surface quality on nucleation, structure, defect formation, and intermixing in complex oxide heteroepitaxy-LaCrO3 on SrTiO3(001). Adv Funct Mater. 2013;23(23):2953–2963.
  • Niu G , Yin S , Saint-Girons G , et al. Epitaxy of BaTiO3 thin film on Si(0 0 1) using a SrTiO3 buffer layer for non-volatile memory application. Microelectron Eng. 2011;88(7):1232–1235.
  • Zhang Y , Yan Q , Yang F , et al. Oxygen pressure dependence of dielectric properties in SrTiO3/Si heterojunctions. Ceramics Int. 2016;42(11):12672–12674.
  • Seifert A , Vojta A , Speck JS , et al. Microstructural instability in single-crystal thin films. J Mater Res. 1996;11(6):1470–1481.
  • Perna P , Méchin L , Chauvat MP , et al. High Curie temperature for La0.7Sr0.3MnO3 thin films deposited on CeO2/YSZ-based buffered silicon substrates. J Phys Condens Matter. 2009;21(30):306005.
  • Pradhan AK , Dadson JB , Hunter D , et al. Ferromagnetic properties of epitaxial manganite films on SrTiO3/Si heterostructures. J Appl Phys. 2006;100(3):033903.
  • Boschker H , Huijben M , Vailionis A , et al. Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics. J Phys D Appl Phys. 2011;44(20):205001.
  • Gupta A , Gong G . Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Phys Rev B Condensed Matter Mater Phys. 1996;54(22):R15629–R15632.
  • Teo BS , Mathur ND , Isaac SP , et al. Low field magnetotransport in La0.7Sr0.3MnO3 films. J Appl Phys. 1998;83(11):7157–7159.
  • Walter T , Dörr K , Müller K-H , et al. Low-field magnetoresistance of La0.7Sr0.3MnO3 thin films with gradually changed texture. Appl Phys Lett. 1999;74(15):2218–2220.
  • O’Donnell J , Onellion M , Rzchowski MS , et al. Low-field magnetoresistance in tetragonalsfilms. Phys Rev B Condensed Matter Mater Phys. 1997;55(9):5873–5879.
  • Balcells L , Carrillo AE , Martı́nez B , et al. Room temperature magnetoresistive sensor based on thick films manganese perovskite. J Magn Magn Mater. 2000;221(1–2):224–230.
  • Gómez A , Vila-Fungueiriño JM, Moalla R. Electric and mechanical switching of ferroelectric and resistive states in semiconducting BaTiO3 – δ films on silicon. Small. 2017;13(39):1701614.
  • Arzt E . Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 1998;46(16):5611–5626.