3,530
Views
41
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Inkjet-printed metal oxide nanoparticles on elastomer for strain-adaptive transmissive electrochromic energy storage systems

, , , & ORCID Icon
Pages 759-770 | Received 12 Jul 2018, Accepted 17 Sep 2018, Published online: 25 Oct 2018

References

  • Li S, Lee PS. Development and applications of transparent conductive nanocellulose paper. Sci Tech Adv Mater. 2017;18(1):620–633.
  • Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater. 2016;15(9):937–950.
  • Yan C, Wang J, Kang W, et al. Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv Mater. 2014;26(13):2022–2027.
  • Mun S, Kim HC, Ko H-U, et al. Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics. Sci Tech Adv Mater. 2017;18(1):437–446.
  • Cai GF, Cheng X, Layani M, et al. Direct inkjet-patterning of energy efficient flexible electrochromics. Nano Energy. 2018;49:147–154.
  • Llordes A, Garcia G, Gazquez J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature. 2013;500:323–326.
  • Cannavale A, Eperon GE, Cossari P, et al. Perovskite photovoltachromic cells for building integration. Energy Environ Sci. 2015;8:1578–1584.
  • Yang X, Zhu G, Wang S, et al. A self-powered electrochromic device driven by a nanogenerator. Energy Environ Sci. 2012;5:9462–9466.
  • Cai GF, Wang JX, Lee PS. Next-generation multifunctional electrochromic devices. Acc Chem Res. 2016;49:1469–1476.
  • Wang K, Wu H, Meng Y, et al. Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ Sci. 2012;5(8):8384–8389.
  • Layani M, Darmawan P, Foo WL, et al. Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes. Nanoscale. 2014;6:4572–4576.
  • Kang W, Lin M-F, Chen J, et al. Highly transparent conducting nanopaper for solid state foldable electrochromic devices. Small. 2016;12:6370–6377.
  • Llordes A, Wang Y, Fernandez-Martinez A, et al. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing. Nat Mater. 2016;15:1267–1273.
  • Cao X, Lau C, Liu Y, et al. Fully screen-printed, large-area, and flexible active-matrix electrochromic displays using carbon nanotube thin-film transistors. ACS Nano. 2016;10:9816–9822.
  • Cheng T, Zhang Y-Z, Yi J-P, et al. Inkjet-printed flexible, transparent and aesthetic energy storage devices based on PEDOT:PSS/Ag grid electrodes. J Mater Chem A. 2016;4:13754–13763.
  • Yan C, Kang W, Wang J, et al. Stretchable and wearable electrochromic devices. ACS Nano. 2013;8(1):316–322.
  • Park S, Parida K, Lee PS. Deformable and transparent ionic and electronic conductors for soft energy devices. Adv Energy Mater. 2017;7:1701369.
  • Chou -H-H, Nguyen A, Chortos A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat Commun. 2015;6:8011.
  • Xia X, Ku Z, Zhou D, et al. Perovskite solar cell powered electrochromic batteries for smart windows. Mater Horiz. 2016;3(6):588–595.
  • Cai GF, Wang X, Cui MQ, et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy. 2015; 12:258–267.
  • Yang P, Sun P, Mai W. Electrochromic energy storage devices. Mater Today. 2016;19(7):394–402.
  • Li H, McRae L, Firby CJ, et al. Nanohybridization of molybdenum oxide with tungsten molybdenum oxide nanowires for solution-processed fully reversible switching of energy storing smart windows. Nano Energy. 2018;47:130–139.
  • Wei D, Scherer MRJ, Bower C, et al. A nanostructured electrochromic supercapacitor. Nano Lett. 2012;12(4):1857–1862.
  • Tian Y, Cong S, Su W, et al. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett. 2014;14(4):2150–2156.
  • Wang J, Zhang L, Yu L, et al. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat Commun. 2014;5:4921.
  • Yun TG, Kim D, Kim YH, et al. Photoresponsive smart coloration electrochromic supercapacitor. Adv Mater. 2017;29(32):1606728.
  • Lee P, Ham J, Lee J, et al. Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv Funct Mater. 2014;24:5671.
  • Kim KK, Hong S, Cho HM, et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 2015;15:5240.
  • Hong S, Lee H, Lee J, et al. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater. 2015;27:4744.
  • Jung J, Lee H, Ha I, et al. Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl Mater Interfaces. 2017;9:44609.
  • Liu H-S, Pan B-C, Liou G-S. Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale. 2017;9(7):2633–2639.
  • Chen T, Xue Y, Roy AK, et al. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano. 2014;8(1):1039–1046.
  • Xu P, Kang J, Choi J-B, et al. Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor. ACS Nano. 2014;8(9):9437–9445.
  • Chen T, Peng H, Durstock M, et al. High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Sci Reps. 2014;4:3612.
  • Gong S, Zhao Y, Shi Q, et al. Self-assembled ultrathin gold nanowires as highly transparent, conductive and stretchable supercapacitor. Electroanalysis. 2016;28(6):1298–1304.
  • Lee H, Hong S, Lee J, et al. Highly stretchable and transparent supercapacitor by Ag–au core–shell nanowire network with high electrochemical stability. ACS Appl Mater Interfaces. 2016;8(24):15449–15458.
  • Moon H, Lee H, Kwon J, et al. Ag/Au/polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices. Sci Reps. 2017;7:41981.
  • Park S, Tan AWM, Wang J, et al. Coaxial Ag-base metal nanowire networks with high electrochemical stability for transparent and stretchable asymmetric supercapacitors. Nanoscale Horizons. 2017;2(4):199–204.
  • Li N, Zhi C, Zhang H. High-performance transparent and flexible asymmetric supercapacitor based on graphene-wrapped amorphous FeOOH nanowire and Co(OH)2 nanosheet transparent films produced at air-water interface. Electrochimica Acta. 2016;220:618–627.
  • Chen X, Lin H, Chen P, et al. Smart, stretchable supercapacitors. Adv Mater. 2014;26(26):4444–4449.
  • Cai GF, Darmawan P, Cui MQ, et al. Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv Energy Mater. 2016;6(4):1501882.
  • Li P, Liang C, Bao B, et al. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells. Nano Energy. 2018;46:203–211.
  • Cai GF, Eh AL-S, Ji L, et al. Recent advances in electrochromic smart fenestration. Adv Sustainable Syst. 2017;1:1700074.
  • Lee PS, Cai GF, Eh ALS, et al. Electrochromics for printed displays and smart windows. In nanomaterials for 2D and 3D printing. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2017. p. 317–339.
  • McManus D, Vranic S, Withers F, et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat Nanotech. 2017;12:343.
  • Ko SH, Pan H, Grigoropoulos CP, et al. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology. 2007;18:345202.
  • Chung J, Ko SH, Grigoropoulos CP, et al. Damage-free low temperature pulsed laser printing of gold nanoinks on polymers. J Heat Transfer. 2005;127(7):724-732.
  • Ko SH, Lee D, Hotz N, et al. Digital selective growth of ZnO nanowire arrays from inkjet-printed nanoparticle seeds on a flexible substrate. Langmuir. 2012;28:4787.
  • Kwon J, Hong S, Lee H, et al. Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate. Nanoscale Res Lett. 2013;8:489.
  • Cai GF, Darmawan P, Cheng X, et al. Inkjet printed large area multifunctional smart windows. Adv Energy Mater. 2017;7(14):1602598.
  • Costa C, Pinheiro C, Henriques I, et al. Inkjet printing of sol–gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. ACS Appl Mater Interfaces. 2012;4(3):1330–1340.
  • Huang -C-C, Kao Z-K, Liao Y-C. Flexible miniaturized nickel oxide thermistor arrays via inkjet printing technology. ACS Appl Mater Interfaces. 2013;5(24):12954–12959.
  • Wang J, Yan C, Kang W, et al. High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale. 2014;6(18):10734–10739.
  • Kim J, Park J, Jeong U, et al. Silver nanowire network embedded in polydimethylsiloxane as stretchable, transparent, and conductive substrates. J Appl Polym Sci. 2016;133(33):43830.
  • Cai GF, Darmawan P, Cui MQ, et al. Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes. Nanoscale. 2016;8(1):348–357.
  • Yu M, Zhang Y, Zeng Y, et al. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Adv Mater. 2014;26(27):4724–4729.
  • Kim J-H, Park J-W. Foldable transparent substrates with embedded electrodes for flexible electronics. ACS Appl Mater Interfaces. 2015;7(33):18574–18580.
  • Wu H, Hu L, Rowell MW, et al. Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 2010;10(10):4242–4248.
  • De S, Higgins TM, Lyons PE, et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano. 2009;3(7):1767–1774.
  • Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457(7230):706–710.
  • Li J, Hu L, Wang L, et al. Organic light-emitting diodes having carbon nanotube anodes. Nano Lett. 2006;6(11):2472–2477.
  • Kim YH, Sachse C, Machala ML, et al. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv Funct Mater. 2011;21(6):1076–1081.
  • Liang J, Li L, Tong K, et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano. 2014;8(2):1590–1600.
  • Hsu P-C, Wu H, Carney TJ, et al. Passivation coating on electrospun copper nanofibers for stable transparent electrodes. ACS Nano. 2012;6(6):5150–5156.
  • Liu G-S, Qiu J-S, Xu D-H, et al. Fabrication of embedded silver nanowires on arbitrary substrates with enhanced stability via chemisorbed alkanethiolate. ACS Appl Mater Interfaces. 2017;9(17):15130–15138.
  • Song T-B, Rim YS, Liu F, et al. Highly robust silver nanowire network for transparent electrode. ACS Appl Mater Interfaces. 2015;7(44):24601–24607.
  • Lee J, Lee P, Lee HB, et al. Room temperature nanosoldering of a very long metal nanowire network by conducting polymer assisted joining for a flexible touch panel application. Adv Funct Mater. 2013;23:4171.
  • Wei H, Yan X, Wu S, et al. Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: electrochromic behavior and electrochemical energy storage. J Phys Chem C. 2012;116(47):25052–25064.
  • Yang P, Sun P, Chai Z, et al. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew Chem Int Ed. 2014;53(44):11935–11939.
  • Zhu M, Huang Y, Huang Y, et al. Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor–photodetector system. Adv Funct Mater. 2016;26(25):4481–4490.
  • Li N, Huang X, Li R, et al. Pseudocapacitive transparent/flexible supercapacitor based on graphene wrapped Ni(OH)2 nanosheet transparent film produced using scalable bio-inspired methods. Electrochim Acta. 2016;219:61–69.
  • Li N, Huang X, Zhang H, et al. NaCl multistage-recrystallization-induced formation of 3D micro-structured ribbon-like graphene based films for high performance flexible/transparent supercapacitors. J Mater Chem A. 2017;5(28):14595–14603.
  • Li N, Yang G, Sun Y, et al. Free-standing and transparent graphene membrane of polyhedron box-shaped basic building units directly grown using a NaCl template for flexible transparent and stretchable solid-state supercapacitors. Nano Lett. 2015;15(5):3195–3203.
  • Jung HY, Karimi MB, Hahm MG, et al. Transparent, flexible supercapacitors from nano-engineered carbon films. Sci Rep. 2012;2:773.