8,660
Views
148
CrossRef citations to date
0
Altmetric
Engineering and Structural materials

Microstructural characterization and properties of selective laser melted maraging steel with different build directions

ORCID Icon, , , &
Pages 746-758 | Received 10 Jul 2018, Accepted 20 Sep 2018, Published online: 22 Oct 2018

References

  • Vasudevan VK , Kim SJ , Wayman CM. Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels. Metallurgical Trans A. 1990;21:2655–2668.
  • Kürnsteiner P , Wilms MB , Weisheit A , et al. Massive nanoprecipitation in an Fe-19Ni-x Al maraging steel triggered by the intrinsic heat treatment during laser metal deposition. Acta Mater. 2017;129:52–60.
  • A.I.H. Committee . Properties and selection: irons steels and high performance alloys. In: ASM handbook. USA: Materials Information Company; 1991. p. 1872–1873.
  • Hermann Becker T , Dimitrov D. The achievable mechanical properties of SLM produced Maraging Steel 300 components. Rapid Prototyping J. 2016;22:487–494.
  • Olakanmi EO , Cochrane RF , Dalgarno KW . A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci. 2015;74:401–477.
  • Lang F , Kenyon N . Welding of maraging steels. Welding Research Council; 1971.
  • Jägle E , Sheng Z , Kürnsteiner P , et al. Comparison of Maraging Steel Micro- and Nanostructure Produced Conventionally and by Laser Additive Manufacturing. Materials. 2016;10:8.
  • Xu Z , Zhang Y . Quench rates in air, water, and liquid nitrogen, and inference of temperature in volcanic eruption columns. Earth Planet Sci Lett. 2002;200:315–330.
  • Jägle EA , Choi P-P , Van Humbeeck J , et al. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J Mater Res. 2014;29:2072–2079.
  • Tan C , Zhou K , Ma W , et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater Des. 2017;134:23–34.
  • Herzog D , Seyda V , Wycisk E , et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392.
  • Scudino S , Unterdörfer C , Prashanth K , et al. Additive manufacturing of Cu–10Sn bronze. Mater Lett. 2015;156:202–204.
  • Tan C , Zhou K , Ma W , et al. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties. Sci Technol Adv Mater. 2018;19:370-380.
  • Tan C , Zhou K , Ma W , et al. Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture. Mater Des. 2018;155:77–85.
  • Al-Saedi DSJ , Masood SH , Faizan-Ur-Rab M , et al. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM. Mater Des. 2018;144:32–44.
  • Liu C , Cai Z , Dai Y , et al. Experimental comparison of the flow rate and cooling performance of internal cooling channels fabricated via selective laser melting and conventional drilling process. Int J Adv Manufact Technol. 2018;96:2757–2767.
  • Bai Y , Yang Y , Xiao Z , et al. Selective laser melting of maraging steel: mechanical properties development and its application in mold. Rapid Prototyping J. 2018;24:623–629.
  • Cyr E , Asgari H , Shamsdini S , et al. Fracture behaviour of additively manufactured MS1-H13 hybrid hard steels. Mater Lett. 2018;212:174–177.
  • Gorsse S , Hutchinson C , Gouné M , et al. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci Technol Adv Mater. 2017;18:584–610.
  • Carter LN , Martin C , Withers PJ , et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J Alloys Compd. 2014;615:338–347.
  • Prashanth K , Scudino S , Eckert J . Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Mater. 2017;126:25–35.
  • Bai Y , Yang Y , Wang D , et al. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater Sci Eng A. 2017;703:116–123.
  • Casalino G , Campanelli SL , Contuzzi N , et al. Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt Laser Technol. 2015;65:151–158.
  • Mutua J , Nakata S , Onda T , et al. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater Des. 2018;139:486–497.
  • Casati R , Lemke J , Tuissi A , et al. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting. Metals. 2016;6:218.
  • A.S.T.M. Standard, ASTM E23-12c . Standard test methods for notched bar impact testing of metallic materials. West Conshohocken, PA, USA: ASTM International; 2012.
  • Svenungsson J , Choquet I , Kaplan AFH . Laser welding process – a review of keyhole welding modelling. Physics Procedia. 2015;78:182–191.
  • Bui N , Dabosi F . Contribution to the study of the effect of molybdenum on the ageing kinetics of maraging steels. Cobalt. 1972;192–201.
  • Guo Z , Sha W , Li D . Quantification of phase transformation kinetics of 18 wt.% Ni C250 maraging steel. Mater Sci Eng A. 2004;373:10–20.
  • Pereloma EV , Shekhter A , Miller MK , et al. Ageing behaviour of an Fe–20Ni–1.8Mn–1.6Ti–0.59Al (wt%) maraging alloy: clustering, precipitation and hardening. Acta Mater. 2004;52:5589–5602.
  • Goldberg A , O’Connor DG . Influence of heating rate on transformations in an 18 per cent nickel maraging steel. Nature. 1967;213:170.
  • Menapace C , Lonardelli I , Molinari A . Phase transformation in a nanostructured M300 maraging steel obtained by SPS of mechanically alloyed powders. J Therm Anal Calorim. 2010;101:815–821.
  • S.A. 6514H . Steel, maraging, bars, forgings, tubing, and rings 18.5Ni - 9.0Co - 4.9Mo - 0.65Ti - 0.10Al consumable electrode vacuum melted, annealed. USA: SAE International; 2012. p. 8.
  • Suryawanshi J , Prashanth KG , Ramamurty U . Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting. J Alloys Compd. 2017;725:355–364.
  • Prashanth K , Eckert J . Formation of metastable cellular microstructures in selective laser melted alloys. J Alloys Compd. 2017;707:27–34.
  • Kou S . Welding metallurgy. 2nd ed ed. New York: Wiley; 2003.
  • Mercelis P , Kruth JP . Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping J. 2006;12:254–265.
  • Kempen K , Yasa E , Thijs L , et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Physics Procedia. 2011;12:255–263.
  • Tan C , Kuang T , Zhou K , et al. Fabrication and characterization of in-situ duplex plasma-treated nanocrystalline Ti/AlTiN coatings. Ceramics Int. 2016;42:10793–10800.
  • Prashanth K , Debalina B , Wang Z , et al. Tribological and corrosion properties of Al-12Si produced by selective laser melting. J Mater Res. 2014;29:2044–2054.
  • Schubert T , Löser W , Schinnerling S , et al. Alternative phase formation in thin strip casting of stainless steels. Mater Sci Tech-Lond. 2013;11:181–185.
  • Lee Y , Nordin M , Babu SS , et al. Effect of fluid convection on dendrite arm spacing in laser deposition. Metallurgical Mater Trans B. 2014;45:1520–1529.
  • Gladman T . Precipitation hardening in metals. Mater Sci Tech-Lond. 1999;15:30–36.
  • He Y , Yang K , Liu K , et al. Age hardening and mechanical properties of a 2400 MPa grade cobalt-free maraging steel. Metallurgical Mater Trans. 2006;37:1107–1116.
  • Niendorf T , Leuders S , Riemer A , et al. Highly Anisotropic Steel Processed by Selective Laser Melting. Metallurgical Mater Trans B. 2013;44:794–796.
  • Kunze K , Etter T , Grässlin J , et al. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM). Mater Sci Eng A. 2015;620:213–222.