27,693
Views
385
CrossRef citations to date
0
Altmetric
Focus on Energy Harvesting - Science, Technology, Application and Metrology

Thermoelectric materials and applications for energy harvesting power generation

, , , , &
Pages 836-862 | Received 19 Apr 2018, Accepted 28 Sep 2018, Published online: 14 Nov 2018

References

  • Bryzek J, Grace RH. Trillion sensor initiative. Commer Micro Manuf. 2014;7:42–46.
  • Mori T, Priya S. Materials for energy harvesting: at the forefront of a new wave. MRS Bull. 2018;43(3):176–180.
  • Rowe DM. Thermoelectrics handbook: macro to nano. Boca Raton (FL): CRC Press, Taylor & Francis Group; 2006.
  • Liu W, Kim HS, Jie Q, et al. Importance of high power factor in thermoelectric materials for power generation application: A perspective. Scr Mater. 2016;111:3–9.
  • Mori T. Novel principles and nanostructuring methods for enhanced thermoelectrics. Small. 2017;17:1702013.
  • Liu Z, Mao J, Liu T, et al. Nano-microstructural control of phonon engineering for thermoelectric energy harvesting. MRS Bull. 2018;43(3):181–186.
  • Gooth J, Schierning G, Felser C, et al. Quantum materials for thermoelectricity. MRS Bull. 2018;43(3):187–192.
  • Tian R, Wan C, Hayashi N, et al. Wearable and flexible thermoelectrics for energy harvesting. MRS Bull. 2018;43(3):193–198.
  • Available from: http://www.soumu.go.jp/soutsu/hokuriku/denpa/about%20rfid.html, 2009 Ministry of Internal Affairs and Communications, Japan, All Rights Reserved.
  • Wang KL, Alzate JG, Amiri PK. Low-power non-volatile spintronic memory: STT-RAM and beyond. J Phys D. 2013;46:074003.
  • Russ B, Glaudell A, Urban JJ, et al. Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater. 2016;1. DOI:10.1038/natrevmats.2016.50
  • Bubnova O, Crispin X. Towards polymer-based organic thermoelectric generators. Energy Environ Sci. 2012;5:9345.
  • Kroon R, Mengistie DA, Kiefer D, et al. Thermoelectric plastics: from design to synthesis, processing and structure-property relationships. Chem Soc Rev. 2016;45:6147–6164.
  • Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7:105–114.
  • Bredas JL, Street GB. Polarons, bipolarons, and solitons in conducting polymers. Acc Chem Res. 1985;18:309–315.
  • Chance RR, Brédas JL, Silbey R. Bipolaron transport in doped conjugated polymers. Phys Rev B. 1984;29:4491–4495.
  • Beverina L, Pagani GA, Sassi M. Multichromophoric electrochromic polymers: colour tuning of conjugated polymers through the side chain functionalization approach. Chem Commun (Camb). 2014;50:5413–5430.
  • Sonmez G. Polymeric electrochromics. Chem Commun (Camb). 2005;5251–5259. DOI:10.1039/b510230h
  • Kaiser AB, Skakalova V. Electronic conduction in polymers, carbon nanotubes and graphene. Chem Soc Rev. 2011;40:3786–3801.
  • Dongmin Kang S, Jeffrey Snyder G. Charge-transport model for conducting polymers. Nat Mater. 2017;16:252–257.
  • Bubnova O, Khan ZU, Wang H, et al. Semi-metallic polymers. Nat Mater. 2014;13:190–194.
  • Petsagkourakis I, Pavlopoulou E, Cloutet E, et al. Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism. Org Electron. 2018;52:335–341.
  • Park YW, Denenstein A, Chiang CK, et al. Semiconductor-metal transition in doped (CH)x: thermoelectric power. Solid State Commun. 1979;29:747–751.
  • Hiroshige Y, Ookawa M, Toshima N. Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene. Synth Met. 2007;157:467–474.
  • Xuan Y, Liu X, Desbief S, et al. Thermoelectric properties of conducting polymers: the case of poly(3-hexylthiophene). Phys Rev B. 2010;82. DOI:10.1103/PhysRevB.82.115454
  • Bubnova O, Khan ZU, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater. 2011;10:429–433.
  • Massonnet, N., Carella, A., Jaudouin, A., et al. Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films. J Mater Chem. 2014;C 2:1278–1283.
  • Wang J, Cai K, Shen S. A facile chemical reduction approach for effectively tuning thermoelectric properties of PEDOT films. Org Electron. 2015;17:151–158.
  • Khan, ZU., et al. Acido-basic control of the thermoelectric properties of poly(3,4-ethylenedioxythiophene)tosylate (PEDOT-Tos) thin films. J Mater Chem. 2015;C 3:10616–10623.
  • Fan Z, Li P, Du D, et al. Significantly enhanced thermoelectric properties of PEDOT:PSS films through sequential post-treatments with common acids and bases. Adv Energy Mat. 2017;7. DOI:10.1002/aenm.201602116
  • Jung IH, Hong CT, Lee U-H, et al. High thermoelectric power factor of a diketopyrrolopyrrole-based low bandgap polymer via finely tuned doping engineering. Sci Rep. 2017;7:44704.
  • Patel SN, Glaudell AM, Kiefer D, et al. Increasing the thermoelectric power factor of a semiconducting polymer by doping from the vapor phase. ACS Macro Lett. 2016;5:268–272.
  • Lim E, Peterson KA, Su GM, et al. Thermoelectric properties of poly(3-hexylthiophene) (P3HT) doped with 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by vapor-phase infiltration. Chem Mater. 2018;30:998–1010.
  • Zou Y, Huang D, Meng Q, et al. Correlation between Seebeck coefficient and transport energy level in poly(3-hexylthiophene). Org Electron. 2018;56:125–128.
  • Park T, Park C, Kim B, et al. Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ Sci. 2013;6:788–792.
  • Bubnova O, Berggren M, Crispin X. Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. J Am Chem Soc. 2012;134:16456–16459.
  • Zhang L, Goto T, Imae I, et al. Thermoelectric properties of PEDOT films prepared by electrochemical polymerization. J Polymer Sci B. 2017;55:524–531.
  • Culebras M, Gómez CM, Cantarero A. Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction. J Mater Chem. 2014;A 2:10109–10115.
  • Geoghegan M, Hadziioannou G. Polymer electronics. Oxford: OUP; 2013.
  • Lévesque I, Bertrand P-O, Blouin N, et al. Synthesis and thermoelectric properties of polycarbazole, polyindolocarbazole, and polydiindolocarbazole derivatives. Chem Mater. 2007;19:2128–2138.
  • Li H, DeCoster ME, Ireland RM, et al. Modification of the poly(bisdodecylquaterthiophene) structure for high and predominantly nonionic conductivity with matched dopants. J Am Chem Soc. 2017;139:11149–11157.
  • Wang L, Pan C, Liang A, et al. The effect of the backbone structure on the thermoelectric properties of donor–acceptor conjugated polymers. Polym Chem. 2017;8:4644–4650.
  • Koch FPV, Rivnay J, Foster S, et al. The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Prog Polym Sci. 2013;38:1978–1989.
  • Fan Z, Du D, Yao H, et al. Higher PEDOT molecular weight giving rise to higher thermoelectric property of PEDOT:PSS: a comparative study of clevios P and clevios PH1000. ACS Appl Mater Interfaces. 2017;9:11732–11738.
  • Noriega R, Rivnay J, Vandewal K, et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater. 2013;12:1038–1044.
  • Petsagkourakis I, Pavlopoulou E, Portale G, et al. Structurally-driven enhancement of thermoelectric properties within poly(3,4-ethylenedioxythiophene) thin films. Sci Rep. 2016;6:30501.
  • Park YW, Heeger AJ, Druy MA, et al. Electrical transport in doped polyacetylene. J Chem Phys. 1980;73:946.
  • Kim JY, Jung JH, Lee DE, et al. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth Met. 2002;126:311–316.
  • Jiang F-X, Jing-Kun X, Bao-Yang L, et al. Thermoelectric performance of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate). Chin Phys Lett. 2008;25:2202.
  • Kim GH, Shao L, Zhang K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater. 2013;12:719–723.
  • Palumbiny, C. M., Liu, F., Russell, T.P., et al. The crystallization of PEDOT:PSS polymeric electrodes probed in situ during printing. Adv Mater. 2015;27:3391–3397.
  • Liu E, Liu C, Zhu Z, et al. Enhanced thermoelectric performance of PEDOT:PSS films by solvent thermal treatment. J Polymer Res. 2015;22. DOI:10.1007/s10965-015-0883-3
  • Liu S, Deng H, Zhao Y, et al. The optimization of thermoelectric properties in a PEDOT:PSS thin film through post-treatment. RSC Adv. 2015;5:1910–1917.
  • Kishi N, Kondo Y, Kunieda H, et al. Enhancement of thermoelectric properties of PEDOT:PSS thin films by addition of anionic surfactants. J Mater Science. 2017;29:4030–4034.
  • Wang J, Cai K, Shen S. Enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene) thin films treated with H2SO4. Org Electron. 2014;15:3087–3095.
  • Bubnova, O., Khan, Z. U., Wang, H., et al. Semi-metallic polymers. Nat Mater. 2013;13:nmat3824.
  • Beretta D, Barker AJ, Maqueira-Albo I, et al. Thermoelectric properties of highly conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate printed thin films. ACS Appl Mater Interfaces. 2017;9:18151–18160.
  • Rastegaralam M, Lee C, Dettlaff-Weglikowska U. Solvent-dependent thermoelectric properties of PTB7 and effect of 1,8-diiodooctane additive. Crystals. 2017;7:292.
  • Hynynen J, Kiefer D, Müller C. Influence of crystallinity on the thermoelectric power factor of P3HT vapour-doped with F4TCNQ. RSC Adv. 2018;8:1593–1599.
  • Qu S, Yao Q, Wang L, et al. Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy. NPG Asia Mat. 2016;8:e292–e292.
  • Rubinstein M, Colby RH. Polymer physics. Oxford: OUP; 2003.
  • Zuo G, Liu X, Fahlman M, et al. High Seebeck coefficient in mixtures of conjugated polymers. Adv Funct Mater. 2017. DOI:10.1002/adfm.201703280
  • Zhang K, Qiu J, Wang S. Thermoelectric properties of PEDOT nanowire/PEDOT hybrids. Nanoscale. 2016;8:8033–8041.
  • Zhang K, Wang S, Qiu J, et al. Effect of host-mobility dependent carrier scattering on thermoelectric power factors of polymer composites. Nano Energy. 2016;19:128–137.
  • Sun Y, Sheng P, Di C, et al. Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv Mater. 2012;24:932–937.
  • Menon, A. K., et al. Metallo-organic n-type thermoelectrics: emphasizing advances in nickel-ethenetetrathiolates. J Appl Polym Sci. 2017;134:44402.
  • Sun Y, Qiu L, Tang L, et al. Flexible n-type high-performance thermoelectric thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method. Adv Mater. 2016;28:3351–3358.
  • Liu L, Sun Y, Li W, et al. Flexible unipolar thermoelectric devices based on patterned poly[Kx(Ni-ethylenetetrathiolate)] thin films. Mater Chem Front. 2017;1:2111–2116.
  • Schlitz RA, Brunetti FG, Glaudell AM, et al. Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications. Adv Mater. 2014;26:2825–2830.
  • Russ B, Robb MJ, Brunetti FG, et al. Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design. Adv Mater. 2014;26:3473–3477.
  • Shi K, Zhang F, Di C-A, et al. Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones. J Am Chem Soc. 2015;137:6979–6982.
  • Ma W, Shi K, Wu Y, et al. Enhanced molecular packing of a conjugated polymer with high organic thermoelectric power factor. ACS Appl Mater Interfaces. 2016;8:24737–24743.
  • Kiefer D, Giovannitti A, Sun H, et al. Enhanced n-doping efficiency of a naphthalenediimide-based copolymer through polar side chains for organic thermoelectrics. ACS Energy Lett. 2018;3:278–285.
  • Wang S, Sun H, Ail U, et al. Thermoelectric properties of solution-processed n-doped ladder-type conducting polymers. Adv Mater. 2016;28:10764–10771.
  • Zhao, X., Madan, D., Cheng, Y., et al. High conductivity and electron-transfer validation in an n-type fluoride-anion-doped polymer for thermoelectrics in air. Adv Mater. 2017;29. DOI:10.1002/adma.201606928
  • Vineis CJ, Shakouri A, Majumdar A, et al. Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater. 2010;22:3970–3980.
  • Khan ZU, Edberg J, Hamedi MM, et al. Thermoelectric polymers and their elastic aerogels. Adv Mater. 2016;28:4556–4562.
  • Weathers A, Khan ZU, Brooke R, et al. Significant electronic thermal transport in the conducting polymer poly(3,4-ethylenedioxythiophene). Adv Mater. 2015;27:2101–2106.
  • Liu J, Wang X, Li D, et al. Thermal conductivity and elastic constants of PEDOT:PSS with high electrical conductivity. Macromolecules. 2015;48:585–591.
  • Wei Q, Mukaida M, Kirihara K, et al. Experimental studies on the anisotropic thermoelectric properties of conducting polymer films. ACS Macro Lett. 2014;3:948–952.
  • Wei Q, Uehara C, Mukaida M, et al. Measurement of in-plane thermal conductivity in polymer films. AIP Adv. 2016;6:045315.
  • Shi W, Shuai Z, Wang D. Tuning thermal transport in chain-oriented conducting polymers for enhanced thermoelectric efficiency: a computational study. Adv Funct Mater. 2017;27. DOI:10.1002/adfm.201702847
  • Genovese C, Antidormi A, Dettori R, et al. Linking morphology to thermal conductivity in PEDOT: an atomistic investigation. J Phys D. 2017;50:494002.
  • Søndergaard RR, Hösel M, Espinosa N, et al. Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates. Energy Sci Eng. 2013;1:81–88.
  • Wei Q, Mukaida M, Kirihara K, et al. Polymer thermoelectric modules screen-printed on paper. RSC Adv. 2014;4:28802–28806.
  • Mukaida M, Wei Q, Ishida T. Polymer thermoelectric devices prepared by thermal lamination. Synth Met. 2017;225:64–69.
  • Aranguren P, Roch A, Stepien L, et al. Optimized design for flexible polymer thermoelectric generators. Appl Thermal Eng. 2016;102:402–411.
  • Lee W, Song M, Park S, et al. Acidity-controlled conducting polymer films for organic thermoelectric devices with horizontal and vertical architectures. Sci Rep. 2016;6:33795.
  • Gordiz K, Menon AK, Yee SK. Interconnect patterns for printed organic thermoelectric devices with large fill factors. J Appl Phys. 2017;122. DOI:10.1063/1.4989589
  • Menon AK, Meek O, Eng AJ, et al. Radial thermoelectric generator fabricated from n‐ and p‐type conducting polymers. J Appl Polym Sci. 2017;134. DOI:10.1002/app.44060
  • Menon AK, Yee SK. Design of a polymer thermoelectric generator using radial architecture. J Appl Phys. 2016;119. DOI:10.1063/1.4941101
  • Du Y, Cai K, Chen S, et al. Thermoelectric fabrics: toward power generating clothing. Sci Rep. 2015;5:6411.
  • Ryan JD, Mengistie DA, Gabrielsson R, et al. Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles. ACS Appl Mater Interfaces. 2017;9:9045–9050.
  • Li Z, Sun H, Hsiao C-L, et al. A free-standing high-output power density thermoelectric device based on structure-ordered PEDOT:PSS. Advanced Electron Mater. 2018;4. DOI:10.1002/aelm.201700496
  • Jiao F, Di C-A, Sun Y, et al. Inkjet-printed flexible organic thin-film thermoelectric devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling. Philosophical Trans Royal Soc A. 2014;372. DOI:10.1098/rsta.2013.0008
  • Taroni, P. J., Santagiuliana, G., Wan, K., et al. Toward stretchable self-powered sensors based on the thermoelectric response of PEDOT:PSS/polyurethane blends. Adv Funct Mater. 2017. DOI:10.1002/adfm.201704285
  • Gordon MP, Zaia EW, Zhou P, et al. Soft PEDOT:PSS aerogel architectures for thermoelectric applications. J Appl Polym Sci. 2017;134:44070.
  • Han S, Jiao F, Khan ZU, et al. Thermoelectric polymer aerogels for pressure-temperature sensing applications. Adv Funct Mater. 2017;27. DOI:10.1002/adfm.201703549
  • Satoh N, Otsuka M, Ohki T, et al. Organic π-type thermoelectric module supported by photolithographic mold: a working hypothesis of sticky thermoelectric materials. Sci Tech Adv Mater. 2018;19(1):517–525.
  • Shirakawa H, Louis EJ, MacDiarmid AG, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Comm. 1977;16:578–580.
  • Naoki T. Recent progress of organic and hybrid thermoelectric materials. Synth Met. 2017;225:3–21.
  • Bahk J-H, Bian Z, Shakouri A. Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Phys Rev B. 2013;87:075204.
  • Zebarjadi M, Liao B, Esfarjani K, et al. Enhancing the thermoelectric power factor by using invisible dopants. Adv Mater. 2013;25:1577–1582.
  • Mori T, Hara T. Hybrid effect to possibly overcome the trade-off between Seebeck coefficient and electrical conductivity. Scr Mater. 2016;111:44.
  • Nicolics J, Mündlein M. Electrically conductive adhesives. In: Suhir E, Lee YC, Wong CP, eds. Micro- and opto-electronic materials and structures: physics, mechanics, design, reliability, packaging. Boston (MA): Springer; 2007:B527–B570.
  • Pietrak K, Wiśniewski TS. A review of models for effective thermal conductivity of composite materials. J Power Technol. 2015;95:14–24.
  • Hicks LD, Dresselhaus MS. Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B. 1993;47:12727–12731.
  • Hicks LD, Dresselhaus MS. Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B. 1993;47:16631–16634.
  • Toshima N, Ichikawa S. Conducting polymers and their hybrids as organic thermoelectric materials. J Electr Mater. 2015;44:384–390.
  • Kato K, Hagino H, Miyazaki K. Fabrication of bismuth telluride thermoelectric films containing conductive polymers using a printing method. J Electron Mat. 2013;42:1313–1318.
  • Kato K (2014) Development of high-ZT organic-inorganic hybrid materials [ doctoral thesis]. Japan: Kyushu institute of technology.
  • Orrill M, LeBlanc S. Printed thermoelectric materials and devices: fabrication techniques, advantages, and challenges. J Appl Polym Sci. 2016. DOI:10.1002/APP.44256
  • Shin S, Kumar R, Roh JW, et al. High-performance screen-printed thermoelectric films on fabrics. Sci Rep. 2017;7:7317.
  • Yao Q, Chen L, Zhang W, et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano. 2010;4:2445–2451.
  • Meng C, Liu C, Fan S. A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv Mater. 2010;22:535–539.
  • Kim D-Y, Kim Y-S, Choi K-W, et al. Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3,4-ethylenedioxythiophene). ACS Nano. 2010;4(1):513–523.
  • Wan C, Gu X, Dang F, et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat Mater. 2015;14:622–627.
  • Wan C, Tian R, Kondou M, et al. Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice. Nat Commun. 2017;8:1024.
  • Wan C, Kodama Y, Kondo M, et al. Dielectric mismatch mediates carrier mobility in organic-intercalated layered TiS2. Nano Lett. 2015;15:6302−6308.
  • Shin S, Roh JW, Kim HS, et al. Role of surfactant on thermoelectric behaviors of organic-inorganic composites. J Appl Phys. 2018;123:205106.
  • Malen JA, Yee SK, Majumdar A, et al. Fundamentals of energy transport, energy conversion, and thermal properties in organic–inorganic heterojunctions. Chem Phys Lett. 2010;491:109–122.
  • Mahan GD, Sofo JO. The best thermoelectric. Proc Natl Acad Sci USA. 1996;93:7436–7439.
  • Yee SK, Malen JA, Majumdar A, et al. Thermoelectricity in fullerene-metal heterojunctions. Nano Lett. 2011;11:4089–4094.
  • He M, Ge J, Lin Z, et al. Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy Environ Sci. 2012;5:8351.
  • Scheele M, Oeschler N, Veremchuk I, et al. Thermoelectric properties of lead chalcogenide core-shell nanostructures. ACS Nano. 2011;5:8541–8551.
  • Ou C, Sangle AL, Datta A, et al. Fully printed organic−inorganic nanocomposites for flexible thermoelectric applications. ACS Appl Mater Interfaces. 2018;10:19580–19587.
  • Dong X, Xiong S, Luo B, et al. Flexible and transparent organic−inorganic hybrid thermoelectric modules. ACS Appl Mater Interfaces. 2018;10:26687–26693.
  • Tian R, Wan C, Wang Y, et al. A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices, J. Mater Chem A. 2017;5:564–570.
  • Koga T, Cronin SB, Dresselhaus MS, et al. Experimental proof-of-principle investigation of enhanced in (001) oriented Si/Ge superlattices. Appl Phys Lett. 2000;77:1490–1492.
  • Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001;413:597–602.
  • Caylor JC, Coonley K, Stuart J, et al. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl Phys Lett. 2005;87:023105.
  • Ohta H, Kim S, Mune Y, et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater. 2007;6:129–134.
  • Caballero-Calero O, Martín-González M. Thermoelectric nanowires: A brief prospective. Scripta Mater. 2016;111:54–57.
  • Dresselhaus MS, Chen G, Tang MY, et al. New directions for low-dimensional thermoelectric materials. Adv Mater. 2007;19:1043–1053.
  • Tian Y, Sakr MR, Kinder JM, et al. One-dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires. Nano Lett. 2012;12:6492−6497.
  • Takashiri M, Miyazaki K, Tanaka S, et al. Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films. J Appl Phys. 2008;104:084302.
  • Koumoto K, Mori T, editors. Thermoelectric nanomaterials. Heidelberg: Springer; 2013.
  • Rowe DM, editor. Materials, preparation, and characterization in thermoelectrics. New York: CRC Press; 2012.
  • Shen G, Fan Z, editors. Flexible electronics: from materials to devices. Singapore: World Scientific; 2016.
  • Sato N, Takeda M. Fabrication and evaluation of the flexible thermoelectric device using metal thin films. Proc. 24th International Conference on Thermoelectrics; 2005 Jun 19–23; Clemson (SC); p. 175–178. DOI:10.1109/ICT.2005.1519912
  • Iwasaki Y, Takeda M. Development of flexible thermoelectric device: improvement of device performance. Proc. 25th International Conference on Thermoelectrics; 2006 Aug 6–10; Vienna, Austria; p. 562–565. DOI:10.1109/ICT.2006.331376
  • Varghese T, Hollar C, Richardson J, et al. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals. Sci Rep. 2016;6:33135.
  • Yang C, Souchay D, Kneiß M, et al. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nat Commun. 2017;8:16076.
  • Suarez F, Nozariasbmarz A, Vashaee D, et al. Designing thermoelectric generators for self-powered wearable electronics. Energy Environ Sci. 2016;9:2099–2113.
  • Suarez F, Parekh DP, Ladd C, et al. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Appl Energy. 2017;202:736–745.
  • Yan J, Liao X, Yan D, et al. Review of micro thermoelectric generator. J Microelectromech Syst. 2018;27:1–18.
  • Kishi M, Nemoto T, Hamao T, et al. Micro thermoelectric modules and their application to wristwatches as an energy source. Proc. 18th International Conference on Thermoelectrics; 1999 Aug 29–Sep 2; Baltimore, MD USA; p.301–307. DOI:10.1109/ICT.1999.843389
  • Glatz W, Schwyter E, Durrer L, et al. Bi2Te3-based flexible micro thermoelectric generator with optimized design. J Microelectromech Syst. 2009;18:763–772.
  • Yu X, Wang Y, Liu Y, et al. CMOS MEMS-based thermoelectric generator with an efficient heat dissipation path. J Micromech Microeng. 2012;22:105011.
  • Li Y, Buddharaju K, Singh N, et al. Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology. IEEE Electron Device Lett. 2011;31:674–676.
  • Li Y, Buddharaju K, Tinh BC, et al. Improved vertical silicon nanowire based thermoelectric power generator with polyimide filling. IEEE Electron Device Lett. 2012;33:715–717.