1,968
Views
22
CrossRef citations to date
0
Altmetric
Energy Materials

Voids and compositional inhomogeneities in Cu(In,Ga)Se2 thin films: evolution during growth and impact on solar cell performance

, , ORCID Icon, , , , , , , , , ORCID Icon & show all
Pages 871-882 | Received 31 Jul 2018, Accepted 12 Oct 2018, Published online: 19 Nov 2018

References

  • Feurer T, Reinhard P, Bissig B, et al. Progress in thin film CIGS photovoltaics - research and development, manufacturing, and applications. Prog Photovolt Res Appl. 2016. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/pip.2811
  • Scheer R, Schock H-W. Chalcogenide Photovoltaics. Weinheim: Wiley-VCH; 2011.
  • Abou-Ras D, Schäfer N, Hages CJ, et al. Inhomogeneities in Cu(In,Ga)Se2 thin films for solar cells: band-gap versus potential fluctuations. Sol RRL. 2017;1700199:1700199.
  • Grabitz PO, Rau U, Wille B, et al. Spatial inhomogeneities in Cu(In,Ga)Se2 solar cells analyzed by an electron beam induced voltage technique. J Appl Phys. 2006;100(12):124501.
  • Mattheis J, Rau U, Werner JH. Light absorption and emission in semiconductors with band gap fluctuations-a study on Cu(In,Ga)Se2 thin films. J Appl Phys. 2007;101(11):113519.
  • Jackson P, Wuerz R, Hariskos D, et al. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys Status Solidi Rapid Res Lett. 2016;10(8):583–586.
  • Witte W, Abou-Ras D, Albe K, et al. Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells. Prog Photovolt Res Appl. 2014;23(6): 717-723.
  • El-Hajje G, Ory D, Guillemoles JF, et al. On the origin of the spatial inhomogeneity of photoluminescence in thin-film CIGS solar devices. Appl Phys Lett. 2016;109(2):022104.
  • Delamarre A, Paire M, Guillemoles JF, et al. Quantitative luminescence mapping of Cu(In,Ga)Se2 thin-film solar cells amaury. Prog Photovolt Res Appl. 2015;23:1305–1312.
  • West B, Stuckelberger M, Guthrey H, et al. Synchrotron X-ray characterization of alkali elements at grain boundaries in Cu(In,Ga)Se2 Solar Cells. 2016. 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC): 1259–1263.
  • Avancini E, Carron R, Bissig B, et al. Impact of compositional grading and overall Cu deficiency on the near-infrared response in Cu(In,Ga)Se2 solar cells. Prog Photovolt Res Appl. 2017;25:233–241.
  • Schleussner SM, Törndahl T, Linnarsson M, et al. Development of gallium gradients in three-stage Cu(In,Ga)Se2 co-evaporation processes. Prog Photovolt Res Appl. 2012;20:284–293.
  • Kessler J, Chityuttakan C, Lu J, et al. Cu(In,Ga)Se2 thin films grown with a Cu-poor/rich/poor sequence: growth model and structural considerations. Prog Photovoltaics Res Appl. 2003;11(5):319–331.
  • Schroeder DJ, Berry GD, Rockett AA. Gallium diffusion and diffusivity in CuInSe2 epitaxial layers. Appl Phys Lett. 1996;69(26):4068.
  • Stange H, Brunken S, Hempel H, et al. Effect of Na presence during CuInSe2 growth on stacking fault annihilation and electronic properties. Appl Phys Lett. 2015;107(15):152103.
  • Stange H, Brunken S, Greiner D, et al. Diffusion-induced grain boundary migration as mechanism for grain growth and defect annihilation in chalcopyrite thin films. Acta Mater. 2016;111:377–384.
  • Nishiwaki S, Satoh T, Hashimoto Y, et al. Preparation of Cu(In,Ga)Se2 thin films at low substrate temperatures. J Mater Res. 2001;16(2):394–399.
  • Rudmann D, Brémaud D, Da Cunha AF, et al. Sodium incorporation strategies for CIGS growth at different temperatures. Thin Solid Films. 2005;480–481:55–60.
  • Lundberg O, Lu J, Rockett A, et al. Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells. J Phys Chem Solids. 2003;64(9–10):1499–1504.
  • Chirila A, Reinhard P, Pianezzi F, et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat Mater. 2013;12(12):1107–1111.
  • Keller D, Buecheler S, Reinhard P, et al. Band gap widening at random CIGS grain boundary detected by valence electron energy loss spectroscopy. Appl Phys Lett. 2016;109(15):153103.
  • Carron R, Avancini E, Feurer T, et al. Refractive indices of layers and optical simulations of Cu(In,Ga)Se2 solar cells. Sci Technol Adv Mater. 2018;6996:1–43.
  • Mainz R, Sanli ES, Stange H, et al. Annihilation of structural defects in chalcogenide films for high-efficiency solar cells. Energy Environ. Sci., 2016;9:1818.
  • Chirila A, Buecheler S, Pianezzi F, et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nat Mater. 2011;10(11):857–861.
  • Rodriguez-Alvarez H, Barreau N, Kaufmann CA, et al. Recrystallization of Cu(In,Ga)Se2 thin films studied by X-ray diffraction. Acta Mater. 2013;61(12):4347–4353.
  • Herberholz R, Rau U, Schock HW, et al. Phase segregation, Cu migration and junction formation in Cu(In,Ga)Se2. Eur Phys J Appl Phys. 1999;6:131–139.
  • Lei C, Rockett A, Robertson IM, et al. Void formation and surface energies in Cu(In,Ga)Se2. J Appl Phys. 2006;100(7):073518.
  • Schöldström J, Kessler J, Edoff M. Two-stage growth of smooth Cu(In,Ga)Se2 films using end-point detection. Thin Solid Films. 2005;480:61–66.
  • Walter T, Schock HW. Crystal growth and diffusion in Cu(In,Ga)Se2 chalcopyrite thin films. Thin Solid Films. 1993;224(1):74–81.
  • Reinhard P, Pianezzi F, Kranz L, et al. Flexible Cu(In,Ga)Se2 solar cells with reduced absorber thickness. Prog Photovolt Res Appl. 2015;23:281–289.
  • Seyrling S, Chirila A, Güttler D, et al. Modification of the three-stage evaporation process for CuIn1-xGaxSe2 absorber deposition. Thin Solid Films. 2011;519(21):7232–7236.
  • Barreau N, Lähnemann J, Couzinié-Devy F, et al. Impact of Cu-rich growth on the CuIn1-xGaxSe surface morphology and related solar cells behaviour. Sol Energy Mater Sol Cells. 2009;93(11):2013–2019.
  • Sozzi G, Di Napoli S, Menozzi R, et al. Impact of front-side point contact/passivation geometry on thin-film solar cell performance. Sol Energy Mater Sol Cells. 2017;165(September 2016):94–102.
  • Werner JH, Mattheis J, Rau U. Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2. Thin Solid Films. 2005;480–481:399–409.
  • Kanevce A, Ramanathan K, Contreras M. Impact of buffer and absorber properties in the vicinity of the interface on wide-gap Cu(In,Ga)Se2 solar cell performance. 2014 IEEE 40th Photovolt Spec Conf PVSC 2014. 2014;Il:382–386.
  • Weiss TP, Bissig B, Feurer T, et al. Submitted - bulk and surface recombination properties in semiconductors from time-resolved photoluminescence measurements. p. 1–35.
  • Lei C, Duch M, Robertson IM, et al. Effects of solution-grown CdS on Cu(In,Ga)Se2 grain boundaries. J Appl Phys. 2010;108(11):114908.