3,056
Views
23
CrossRef citations to date
0
Altmetric
Focus on Energy Harvesting - Science, Technology, Application and Metrology

Phonon and heat transport control using pillar-based phononic crystals

ORCID Icon & ORCID Icon
Pages 863-870 | Received 09 Aug 2018, Accepted 27 Oct 2018, Published online: 20 Nov 2018

References

  • Narayanamurti V, Störmer HL, Chin MA, et al. Selective transmission of high-frequency phonons by a superlattice: the “dielectric” phonon filter. Phys Rev Lett. 1979;43:2012–2016.
  • Maldovan M. Phonon wave interference and thermal bandgap materials. Nat Mater. 2015;14:667–674.
  • Maldovan M. Sound and heat revolutions in phononics. Nature. 2013;503:209–217.
  • Maldovan M. Narrow low-frequency spectrum and heat management by thermocrystals. Phys Rev Lett. 2013;110:025902.
  • Maire J, Anufriev R, Yanagisawa R, et al. Heat conduction tuning by wave nature of phonons. Sci Adv. 2017;3:e1700027.
  • Zen N, Puurtinen TA, Isotalo TJ, et al. Engineering thermal conductance using a two-dimensional phononic crystal. Nat Commun. 2014;5:3435.
  • Zhan T, Yamato R, Hashimoto S, et al. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation. Sci Technol Adv Mater. 2018;19:443–453.
  • Haras M, Lacatena V, Morini F, et al. Thermoelectric energy conversion: how good can silicon be? Mater Lett. 2015;157:193–196.
  • Schierning G. Silicon nanostructures for thermoelectric devices: A review of the current state of the art. Phys Status Solidi. 2014;211:1235–1249.
  • Hori A, Shiomi J. Tuning phonon transport spectrum for better thermoelectric materials. Sci Technol Adv Mater (in press).
  • Akinaga H, Fujita H, Mizuguchi M, et al. Focus on advanced materials for energy harvesting: prospects and approaches of energy harvesting technologies. Sci Technol Adv Mater. 2018;19:543–544.
  • Minnich A, Dresselhaus MS, Ren ZF, et al. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci. 2009;2:466.
  • Nakamura Y. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity. Sci Technol Adv Mater. 2018;19:31–43.
  • Nielsch K, Bachmann J, Kimling J, et al. Thermoelectric nanostructures: from physical model systems towards nanograined composites. Adv Energy Mater. 2011;1:713–731.
  • Nomura M, Kage Y, Nakagawa J, et al. Impeded thermal transport in Si multiscale hierarchical architectures with phononic crystal nanostructures. Phys Rev B. 2015;91:205422.
  • Biswas K, He J, Blum ID, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489:414–418.
  • Pennec Y, Vasseur JO, Djafari-Rouhani B, et al. Two-dimensional phononic crystals: examples and applications. Surf Sci Rep. 2010;65:229–291.
  • Nomura M, Shiomi J, Shiga T, et al. Thermal phonon engineering by tailored nanostructures. Jpn J Appl Phys. 2018;57:080101.
  • Verdier M, Anufriev R, Ramiere A, et al. Thermal conductivity of phononic membranes with aligned and staggered lattices of holes at room and low temperatures. Phys Rev B. 2017;95:205438.
  • Maire J, Anufriev R, Yanagisawa R, et al. Heat conduction tuning using the wave nature of phonons. Sci Adv. 2017;3:e1700027.
  • Anufriev R, Maire J, Nomura M. Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures. Phys Rev B. 2016;93:045411.
  • Lee J, Lee W, Wehmeyer G, et al. Investigation of phonon coherence and backscattering using silicon nanomeshes. Nat Commun. 2017;8:14054.
  • Lim J, Wang H-TT, Tang J, et al. Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon. ACS Nano. 2016;10:124–132.
  • Parrish KD, Abel JR, Jain A, et al. Phonon-boundary scattering in nanoporous silicon films: comparison of Monte Carlo techniques. J Appl Phys. 2017;122:125101.
  • Pennec Y, Djafari-Rouhani B, Larabi H, et al. Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate. Phys Rev B. 2008;78:104105.
  • Wu T-T, Huang Z-G, Tsai T-C, et al. Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Appl Phys Lett. 2008;93:111902.
  • Pourabolghasem R, Khelif A, Mohammadi S, et al. Physics of band-gap formation and its evolution in the pillar-based phononic crystal structures. J Appl Phys. 2014;116:013514.
  • Little CE, Anufriev R, Iorsh I, et al. Tamm plasmon polaritons in multilayered cylindrical structures. Phys Rev B. 2012;86:235425.
  • Joannopoulos JD, Pierre R, Villeneuve SF. Photonic crystals:putting a new twist on light. Nature. 1997;386:7.
  • Anufriev R, Nomura M. Heat conduction engineering in pillar-based phononic crystals. Phys Rev B. 2017;95:155432.
  • Graczykowski B, Sledzinska M, Alzina F, et al. Phonon dispersion in hypersonic two-dimensional phononic crystal membranes. Phys Rev B. 2015;91:075414.
  • Xiong S, Sääskilahti K, Kosevich YA, et al. Blocking Phonon Transport by Structural Resonances in Alloy-Based Nanophononic Metamaterials Leads to Ultralow Thermal Conductivity. Phys Rev Lett. 2016;117.
  • Wei Z, Yang J, Bi K, et al. Phonon transport properties in pillared silicon film. J Appl Phys. 2015;118:155103.
  • Honarvar H, Hussein MI. Two orders of magnitude reduction in silicon membrane thermal conductivity by resonance hybridizations. Phys Rev B. 2018;97:195413.
  • Khelif A, Achaoui Y, Benchabane S, et al. Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface. Phys Rev B. 2010;81:214303.
  • Achaoui Y, Khelif A, Benchabane S, et al. Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars. Phys Rev B. 2011;83:104201.
  • Pennec Y, Djafari Rouhani B, Larabi H, et al. Phonon transport and waveguiding in a phononic crystal made up of cylindrical dots on a thin homogeneous plate. Phys Rev B. 2009;80:144302.
  • Li B, Tan KT, Christensen J. Tailoring the thermal conductivity in nanophononic metamaterials. Phys Rev B. 2017;95:144305.
  • Achaoui Y, Laude V, Benchabane S, et al. Local resonances in phononic crystals and in random arrangements of pillars on a surface. J Appl Phys. 2013;114:104503.
  • Hsu JC. Local resonances-induced low-frequency band gaps in two-dimensional phononic crystal slabs with periodic stepped resonators. J Phys D Appl Phys. 2011;44:055401.
  • Feng D, Jiang W, Xu D, et al. Micro-silicon phononic crystal with locally resonant theory. Appl Phys Lett. 2017;110:171902.
  • Jin Y, Fernez N, Pennec Y, et al. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars. Phys Rev B. 2016;93:054109.
  • Pourabolghasem R, Dehghannasiri R, Eftekhar AA, et al. Waveguiding Effect in the Gigahertz Frequency Range in Pillar-based Phononic-Crystal Slabs. Phys Rev Appl. 2018;9:14013.
  • Badreddine Assouar M, Sun JH, Lin FS, et al. Hybrid phononic crystal plates for lowering and widening acoustic band gaps. Ultrasonics. 2014;54:2159–2164.
  • Bilal OR, Hussein MI. Trampoline metamaterial: local resonance enhancement by springboards. Appl Phys Lett. 2013;103:111901.
  • Hsu J-C, Lin F-S. Measurement of locally resonant band gaps in a surface phononic crystal with inverted conical pillars. Jpn J Appl Phys. 2018;57:07LB01.
  • Trzaskowska A, Mielcarek S, Sarkar J. Band gap in hypersonic surface phononic lattice of nickel pillars. J Appl Phys. 2013;114:134304.
  • Sledzinska M, Graczykowski B, Alzina F, et al. Fabrication of phononic crystals on free-standing silicon membranes. Microelectron Eng. 2016;149:41–45.
  • Yudistira D, Boes A, Graczykowski B, et al. Nanoscale pillar hypersonic surface phononic crystals. Phys Rev B. 2016;94:094304.
  • Graczykowski B, Sledzinska M, Kehagias N, et al. Hypersonic phonon propagation in one-dimensional surface phononic crystal. Appl Phys Lett. 2014;104:123108.
  • Kargar F, Debnath B, Kakko J-PP, et al. Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires. Nat Commun. 2016;7:13400.
  • Anufriev R, Nomura M. Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic crystals of different lattice types. Phys Rev B. 2016;93:045410.
  • Puurtinen TA, Maasilta IJ. Low-temperature coherent thermal conduction in thin phononic crystal membranes. Crystals. 2016;6:72.
  • Arantes A, Anjos V. Coherent heat transport in 2D phononic crystals with acoustic impedance mismatch. Model Simul Mater Sci Eng. 2016;24:035017.
  • Davis BL, Hussein MI. Nanophononic metamaterial: thermal conductivity reduction by local resonance. Phys Rev Lett. 2014;112:055505.
  • Wei Z, Wehmeyer G, Dames C, et al. Geometric tuning of thermal conductivity in three-dimensional anisotropic phononic crystals. Nanoscale. 2016;8:16612–16620.
  • Honarvar H, Yang L, Hussein MI. Thermal transport size effects in silicon membranes featuring nanopillars as local resonators. Appl Phys Lett. 2016;108:263101.
  • Honarvar H, Hussein MI. Spectral energy analysis of locally resonant nanophononic metamaterials by molecular simulations. Phys Rev B. 2016;93:081412.
  • Puurtinen TA, Maasilta IJ. Low-Temperature Coherent Thermal Conduction in Thin Phononic Crystal Membranes. Crystals. 2016;6:72.
  • Xingli Z, Xiande W, Zhang X, et al. Influence of surface roughness on thermal properties of single crystalline Ge thin film. Comput Mater Sci. 2016;123:40–43.
  • Neogi S, Reparaz JS, Pereira LFC, et al. Tuning Thermal Transport in Ultrathin Silicon Membranes by Surface Nanoscale Engineering. ACS Nano. 2015;9:3820–3828.
  • Iskandar A, Gwiazda A, Huang Y, et al. Modification of the phonon spectrum of bulk Si through surface nanostructuring. J Appl Phys. 2016;120:095106.
  • Anufriev R, Yanagisawa R, Nomura M. Aluminium nanopillars reduce thermal conductivity of silicon nanobeams. Nanoscale. 2017;9:15083–15088.
  • Kwon S, Wingert MC, Zheng J, et al. Thermal transport in Si and Ge nanostructures in the ‘confinement’ regime. Nanoscale. 2016;8:13155–13167.
  • Donadio D, Galli G. Atomistic simulations of heat transport in silicon nanowires. Phys Rev Lett. 2009;102:195901.
  • Xiong S, Selli D, Neogi S, et al. Native surface oxide turns alloyed silicon membranes into nanophononic metamaterials with ultralow thermal conductivity. Phys Rev B. 2017;95:180301.
  • Shao C, Rong Q, Hu M, et al. Probing the phonon surface interaction by wave packet simulation: effect of roughness and morphology. J Appl Phys. 2017;122:155104.
  • Yamasaka S, Nakamura Y, Ueda T, et al. Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials. Sci Rep. 2015;5:1–9.
  • Uma S, McConnell AD, Asheghi M, et al. Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers. Int J Thermophys. 2001;22:605–616.
  • Wang Z, Alaniz JE, Jang W, et al. Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Lett. 2011;11:2206–2213.
  • Zhang G, Li B. Impacts of doping on thermal and thermoelectric properties of nanomaterials. Nanoscale. 2010;2:1058–1068.
  • Nomura M, Kage Y, Müller D, et al. Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications. Appl Phys Lett. 2015;106:223106.
  • Cahill DG, Watanabe F, Rockett A, et al. Thermal conductivity of epitaxial layers of dilute SiGe alloys. Phys Rev B. 2005;71:235202.
  • Yanagisawa R, Maire J, Ramiere A, et al. Impact of limiting dimension on thermal conductivity of one-dimensional silicon phononic crystals. Appl Phys Lett. 2017;110:133108.
  • Park W, Romano G, Ahn EC, et al. Phonon conduction in silicon nanobeam labyrinths. Sci Rep. 2017;7:6233.