3,492
Views
21
CrossRef citations to date
0
Altmetric
New topics/Others

Data-driven exploration of new pressure-induced superconductivity in PbBi2Te4

, , , , , , , , , , , & show all
Pages 909-916 | Received 04 Sep 2018, Accepted 13 Nov 2018, Published online: 20 Dec 2018

References

  • Ishikawa T, Oda T, Suzuki N, et al. Review on distorted face-centered cubic phase in yttrium via genetic algorithm. High Pressure Res. 2014;35:37–41.
  • Ishikawa T, Nakanishi A, Shimizu K, et al. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure. Sci Rep. 2016;6:23160.
  • Kiyohara S, Oda H, Miyata T, et al. Prediction of interface structures and energies via virtual screening. Sci Adv. 2016;2:e1600746.
  • Seko A, Togo A, Hayashi H, et al. Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization. Phys Rev Lett. 2015;115:205901.
  • Inoshita T, Jeong S, Hamada N, et al. Exploration for two-dimensional electrides via database screening and Ab initio calculation. Phys Rev X. 2014;4:031023.
  • Matsumoto R, Hou Z, Hara H, et al. Two pressure-induced superconducting transitions in SnBi2Se4 explored by data-driven materials search: new approach to developing novel functional materials including thermoelectric and superconducting materials. Appl Phys Express. 2018;11:093101.
  • Rowe DM. CRC handbook of thermoelectrics. Boca Raton (FL): CRC Press; 2010.
  • Kuroki K, Arita R. “Pudding mold” band drives large thermopower in NaxCoO2. J Phys Soc Jpn. 2007;76:083707.
  • Kopnin NB, Heikkilä TT, Volovik GE. High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B. 2011;83:220503.
  • Mori K, Usui H, Sakakibara H, et al. Theoretical expectation of large Seebeck effect in PtAs2 and PtP2. J Phys Soc Jpn. 2014;83:023706.
  • Fries KS, Steinberg S. Fermi-level characteristics of potential chalcogenide superconductors. Chem. Mater. 2018;30:2251–2261.
  • Sano W, Koretsune T, Tadano T, et al. Effect of Van Hove singularities on high-Tc superconductivity in H3S. Phys. Rev. B. 2016;93:094525.
  • Ge Y, Zhang F, Yao Y. First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution. Phys. Rev. B. 2016;93:224513.
  • Matsumoto R, Sasama Y, Fujioka M, et al. Note: novel diamond anvil cell for electrical measurements using boron-doped metallic diamond electrodes. Rev Sci Instrum. 2016;87:076103.
  • Matsumoto R, Irifune T, Tanaka M, et al. Diamond anvil cell using metallic diamond electrodes. Jpn J Appl Phys. 2017;56:05FC01.
  • Matsumoto R, Yamashita A, Hara H, et al. Diamond anvil cells using boron-doped diamond electrodes covered with undoped diamond insulating layer. Appl Phys Express. 2018;11:053101.
  • Matsumoto R, Hara H, Tanaka H, et al. Pressure-Induced Superconductivity in Sulfur-Doped SnSe Single Crystal Using Boron-Doped Diamond Electrode-Prefabricated Diamond Anvil Cell. J Phys Soc Jpn. 2018;87:124706.
  • Xu Y, Yamazaki M, Villars P. Inorganic materials database for exploring the nature of material. Jpn J Appl Phys. 2011;50:11RH02.
  • Momma K, Izumi F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276.
  • Oishi-Tomiyasu R. Robust powder auto-indexing using many peaks. J Appl Cryst. 2014;47:593–598.
  • Matsumoto R, Nishizawa Y, Kataoka N, et al. Reproducibility of XPS analysis for film thickness of SiO2/Si by active Shirley method. J Electron Spectrosc Relat Phenom. 2016;207:55–59.
  • Piermarini GJ, Block S, Barnett JD, et al. Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar. J. Appl. Phys. 1975;46:2774–2780.
  • Akahama Y, Kawamura H. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J. Appl. Phys. 2004;96:3748–3751.
  • Heinke F, Urban P, Werwein A, et al. Cornucopia of structures in the pseudobinary system (SnSe)xBi2Se3: a crystal-chemical copycat. Inorg Chem. 2018;57:4427–4440.
  • Zatsepin DA, Boukhvalov DW, Gavrilov NV, et al. XPS-and-DFT analyses of the Pb 4f-Zn 3s and Pb 5d-O 2s overlapped ambiguity contributions to the final electronic structure of bulk and thin-film Pb-modulated zincite. Appl. Surf. Sci. 2017;405:129–136.
  • Kong D, Cha JJ, Lai K, et al. Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano. 2011;5:4698.
  • Baghchesara MA, Yousefi R, Cheraghizade M, et al. A simple method to fabricate an NIR detector by PbTe nanowires in a large scale. Matter Res Bull. 2016;77:131–137.
  • Wakita T, Paris E, Mizokawa T, et al. Determination of the local structure of CsBi4-xPbxTe6 (x = 0, 0.5) by X-ray absorption spectroscopy. Phys Chem Chem Phys. 2016;18:25136–25142.
  • Doniach S, Šunjić M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J Phys C. 1970;3:285–291.
  • Citrin PH, Wertheim GK, Baer Y. Surface-atom X-ray photoemission from clean metals: Cu, Ag, and Au. Phys. Rev. B. 1983;27:3160–3175.
  • Werthamer NR, Helfand E, Hohenberg PC. Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. Phys. Rev. 1966;147:295–302.