2,161
Views
8
CrossRef citations to date
0
Altmetric
Energy Materials

First-principles prediction of high oxygen-ion conductivity in trilanthanide gallates Ln3GaO6

ORCID Icon, ORCID Icon & ORCID Icon
Pages 144-159 | Received 01 Nov 2018, Accepted 31 Jan 2019, Published online: 06 Mar 2019

References

  • Knauth P, Tuller HL. Solid-state ionics: roots, status, and future prospects. J Am Ceram Soc. 2002;85:1654–1680.
  • Skinner SJ, Kilner JA. Oxygen ion conductors. Mater Today. 2003;6:30–37.
  • Gellings PJ, Bouwmeester H. Handbook of solid state electrochemistry. CRC press; 1997. ISBN: 9780849389566
  • Mogensen M, Sammes NM, Tompsett GA. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion. 2000;129:63–94.
  • Sammes N, Tompsett G, Näfe H, et al. Bismuth based oxide electrolytes—structure and ionic conductivity. J Eur Ceram Soc. 1999;19:1801–1826.
  • Shitara K, Moriasa T, Sumitani A, et al. First-principles selection of solute elements for Er-stabilized Bi2O3 oxide-ion conductor with improved long-term stability at moderate temperatures. Chem Mater. 2017;29:3763–3768.
  • Ishihara T, Matsuda H, Takita Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc. 1994;116:3801–3803.
  • Drennan J, Zelizko V, Hay D, et al. Characterisation, conductivity and mechanical properties of the oxygen-ion conductor La0.9Sr0.1Ga0.8Mg0.2O3-x. J Mater Chem. 1997;7:79–83.
  • Huang K, Goodenough JB. A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer. J Alloys Compd. 2000;303:454–464.
  • Ishihara T, Shibayama T, Honda M, et al. Intermediate temperature solid oxide fuel cells using LaGaO3 electrolyte II. Improvement of oxide ion conductivity and power density by doping Fe for Ga site of LaGaO3. J Electrochem Soc. 2000;147:1332–1337.
  • Gao Z, Miller EC, Barnett SA. A high power density intermediate-temperature solid oxide fuel cell with thin (La0.9Sr0.1)0.98(Ga0.8Mg0.2)O3‐δ electrolyte and nano-scale anode. Adv Func Mater. 2014;24:5703–5709.
  • Brett DJ, Atkinson A, Brandon NP, et al. Intermediate temperature solid oxide fuel cells. Chem Soc Rev. 2008;37:1568–1578.
  • Purohit RD, Chesnaud A, Lachgar A, et al. Development of new oxygen ion conductors based on Nd4GeO8 and Nd3GaO6. Chem Mater. 2005;17:4479–4485.
  • Iakovleva A, Chesnaud A, Animitsa I, et al. Insight into the synthesis and electrical properties of alkali-earth-substituted Gd3GaO6 oxide-ion and proton conductors. Int J Hydrogen Energy. 2016;41:14941–14951.
  • Liu F, Liu Q, Liang J, et al. A systematic study on crystal structure and magnetic properties of Ln3GaO6 (Ln= Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er). J Solid State Chem. 2004;177:1796–1802.
  • Yamane H, Sakamoto T, Kubota S-I, et al. Gd3GaO6 by X-ray powder diffraction. Acta Crystallogr C. 1999;55:479–481.
  • Zeier WG, Roof IP, Smith MD, et al. Crystal growth of Ln3GaO6 (Ln= Nd, Sm, Eu and Gd): structural and optical properties. Solid State Sci. 2009;11:1965–1970.
  • Petit L, Svane A, Szotek Z, et al. First-principles study of rare-earth oxides. Phys Rev B. 2005;72:205118.
  • Jiang H, Gomez-Abal RI, Rinke P, et al. Localized and itinerant states in lanthanide oxides united by GW@ LDA+U. Phys Rev Lett. 2009;102:126403.
  • Jiang H, Rinke P, Scheffler M. Electronic properties of lanthanide oxides from the GW perspective. Phys Rev B. 2012;86:125115.
  • Gillen R, Clark SJ, Robertson J. Nature of the electronic band gap in lanthanide oxides. Phys Rev B. 2013;87:125116.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979.
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758–1775.
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6:15–50.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868.
  • Dudarev SL, Botton GA, Savrasov SY, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B. 1998;57:1505–1509.
  • Fabris S, de Gironcoli S, Baroni S, et al. Taming multiple valency with density functionals: a case study of defective ceria. Phys Rev B. 2005;71:041102.
  • Fabris S, de Gironcoli S, Baroni S, et al. Reply to “Comment on ‘Taming multiple valency with density functionals: A case study of defective ceria’. Phys Rev B. 2005;72:237102.
  • Castleton C, Kullgren J, Hermansson K. Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria. J Chem Phys. 2007;127:244704.
  • Singhal SC, Kendall K. High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier Science; 2003.ISBN: 1856173879
  • Lee J, Ohba N, Asahi R. Discovery of zirconium dioxides for the design of better oxygen-ion conductors using efficient algorithms beyond data mining. RSC Adv. 2018;8:25534–25545.
  • Van de Walle CG, Neugebauer J. First-principles calculations for defects and impurities: applications to III-nitrides. J Appl Phys. 2004;95:3851–3879.
  • Lany S, Zunger A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys Rev B. 2008;78:235104.
  • Lany S, Zunger A. Accurate prediction of defect properties in density functional supercell calculations. Modell Simul Mater Sci Eng. 2009;17:084002.
  • Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B. 2008;78:134106.
  • Togo A, Chaput L, Tanaka I, et al. First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2. Phys Rev B. 2010;81:174301.
  • Baroni S, Giannozzi P, Testa A. Green’s-function approach to linear response in solids. Phys Rev Lett. 1987;58:1861–1864.
  • Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113:9901–9904.
  • Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys. 2000;113:9978–9985.
  • Oka M, Kamisaka H, Fukumura T, et al. DFT-based ab initio MD simulation of the ionic conduction in doped ZrO2 systems under epitaxial strain. Phys Chem Chem Phys. 2015;17:29057–29063.
  • Bai X-M, Zhang Y, Tonks MR. Strain effects on oxygen transport in tetragonal zirconium dioxide. Phys Chem Chem Phys. 2013;15:19438–19449.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519.
  • Shuichi N. Constant temperature molecular dynamics methods. Prog Theor Phys Supp. 1991;103:1–46.
  • Greenwood NN, Earnshaw A. Chemistry of the elements. Butterworth-Heinemann; 1997. ISBN: 0750633654
  • Altman AB, Pacold JI, Wang J, et al. Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy. Dalton Trans. 2016;45:9948–9961.
  • Lal H, Gaur K. Electrical conduction in non-metallic rare-earth solids. J Mater Sci. 1988;23:919–923.
  • Choi S, Kim K, Nahm S, et al. Controlled synthesis and improved luminescent properties of (Gd1−x, Eux)3GaO6 phosphors fabricated via spray pyrolysis. Opt Mater. 2009;31:1684–1687.
  • Zinkevich M, Geupel S, Aldinger F, et al. Phase diagram and thermodynamics of the La2O3–Ga2O3 system revisited. J Phys Chem Solids. 2006;67:1901–1907.
  • Zheng F, Bordia RK, Pederson LR. Phase constitution in Sr and Mg doped LaGaO3 system. Mater Res Bull. 2004;39:141–155.
  • Yoshimoto K, Masuno A, Ueda M, et al. Low phonon energies and wideband optical windows of La2O3-Ga2O3 glasses prepared using an aerodynamic levitation technique. Sci Rep. 2017;7:45600.
  • Pauling L. The principles determining the structure of complex ionic crystals. J Am Chem Soc. 1929;51:1010–1026.
  • Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;32:751–767.
  • Xiao Z, Yan Y. Progress in theoretical study of metal halide perovskite solar cell materials. Adv Energy Mater. 2017;7:1701136.
  • Zunger A. Practical doping principles. Appl Phys Lett. 2003;83:57–59.
  • Stull DR, Prophet H. JANAF thermochemical tables. National Standard Reference Data System; 1971.
  • Reuter K, Scheffler M. Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys Rev B. 2001;65:035406.
  • Pornprasertsuk R, Cheng J, Huang H, et al. Electrochemical impedance analysis of solid oxide fuel cell electrolyte using kinetic Monte Carlo technique. Solid State Ion. 2007;178:195–205.
  • Jeon SH, Son W-J, Park BH, et al. Multiscale simulation on electromigration of the oxygen vacancies in metal oxides. Appl Phys A. 2011;102:909–914.
  • Seko A, Koyama Y, Matsumoto A, et al. First-principles molecular dynamics study for average structure and oxygen diffusivity at high temperature in cubic Bi2O3. J Phys Condens Matter. 2012;24:475402.
  • He X, Zhu Y, Epstein A, et al. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput Mater. 2018;4:18.
  • Evans JD. Straightforward statistics for the behavioral sciences. Brooks/Cole; 1995.ISBN: 0534231004.
  • Andersson DA, Simak SI, Skorodumova NV, et al. Optimization of ionic conductivity in doped ceria. Proc Natl Acad Sci USA. 2006;103:3518–3521.
  • Nakayama M, Martin M. First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations. Phys Chem Chem Phys. 2009;11:3241–3249.
  • Takahashi H, Yashima I, Amezawa K, et al. First-principles calculations for the energetics of the hydration reaction of acceptor-doped BaZrO3. Chem Mater. 2017;29:1518–1526.
  • Seko A, Togo A, Hayashi H, et al. Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization. Phys Rev Lett. 2015;115:205901.
  • Lee J, Seko A, Shitara K, et al. Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Phys Rev B. 2016;93:115104.
  • Sendek AD, Yang Q, Cubuk ED, et al. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy Environ Sci. 2017;10:306–320.
  • Nicolas J, Coutures J, Coutures JP, et al. Sm2O3 Ga2O3 and Gd2O3 Ga2O3 phase diagrams. J Solid State Chem. 1984;52:101–113.
  • Ren X, Pan W. Mechanical properties of high-temperature-degraded yttria-stabilized zirconia. Acta Mater. 2014;69:397–406.