2,195
Views
3
CrossRef citations to date
0
Altmetric
Bio-inspired and Biomedical Materials

Corrosion fatigue in DLC-coated articulating implants: an accelerated methodology to predict realistic interface lifetime

, , , &
Pages 173-186 | Received 18 Sep 2018, Accepted 25 Jan 2019, Published online: 14 Mar 2019

References

  • Manley MT, Sutton K. Bearings of the future for total hip arthroplasty. J Arthroplasty. 2008;23(7):47–50.
  • Della Valle AG, Becksaç B, Anderson J, et al. Late fatigue fracture of a modern cemented forged cobalt chrome stem for total hip arthroplasty: A report of 10 cases. J Arthroplasty. 2005;20(8):1084–1088.
  • Bewilogua K, Hofmann D. History of diamond-like carbon films-From first experiments to worldwide applications. Surf Coat Tech. 2014;242:214–225.
  • Love CA, Cook RB, Harvey TJ, et al. Diamond like carbon coatings for potential application in biological implants—a review. Tribol Int. 2013;63:141–150.
  • Akaike S, Kobayashi D, Aono Y, et al. Relationship between static friction and surface wettability of orthodontic brackets coated with diamond-like carbon (DLC), fluorine- or silicone-doped DLC coatings. Diam Relat Mater. 2016;61:109–114.
  • Nam ND, Lee SH, Kim JG, et al. Effect of stress on the passivation of Si-DLC coating as stent materials in simulated body environment. Diam Relat Mater. 2009;18(9):1145–1151.
  • Hauert R. A review of modified DLC coatings for biological applications. Diam Relat Mater. 2003;12(3):583–589.
  • Hauert R, Thorwarth K, Thorwarth G. An overview on diamond-like carbon coatings in medical applications. Surf Coat Tech. 2013;233(SupplementC):119–130.
  • Taeger G, Podleska LE, Schmidt B, et al. Comparison of diamond-like-carbon and alumina-oxide articulating with polyethylene in total hip arthroplasty. Materialwissenschaft und Werkstofftechnik. 2003;34(12):1094–1100.
  • Joyce TJ. Examination of failed ex vivo metal-on-metal metatarsophalangeal prosthesis and comparison with theoretically determined lubrication regimes. Wear. 2007;263(7):1050–1054.
  • Hauert R, Falub CV, Thorwarth G, et al. Retrospective lifetime estimation of failed and explanted diamond-like carbon coated hip joint balls. Acta Biomater. 2012;8(8):3170–3176.
  • Hauert R, Thorwarth G, Müller U, et al. Analysis of the in vivo failure of the adhesive interlayer for a DLC coated articulating metatarsophalangeal joint. Diam Relat Mater. 2012;25:34–39.
  • Thorwarth K, Thorwarth G, Figi R, et al. On interlayer stability and high-cycle simulator performance of diamond-like carbon layers for articulating joint replacements. Int J Mol Sci. 2014;15(6):10527–10540.
  • Mueller U, Falub CV, Thorwarth G, et al. Diamond-like carbon coatings on a CoCrMo implant alloy: A detailed XPS analysis of the chemical states at the interface. Acta Mater. 2011 Feb;59(3):1150–1161.
  • Hauert R. DLC films in biomedical applications. In: Donnet C, Erdemir A, editors. Tribology of diamond-like carbon films: fundamentals and applications. Boston (MA): Springer US; 2008. p. 494–509.
  • Falub CV, Mueller U, Thorwarth G, et al. In vitro studies of the adhesion of diamond-like carbon thin films on CoCrMo biomedical implant alloy. Acta Mater. 2011;59(11):4678–4689.
  • Falub CV, Thorwarth G, Affolter C, et al. A quantitative in vitro method to predict the adhesion lifetime of diamond-like carbon thin films on biomedical implants. Acta Biomater. 2009 Oct;5(8):3086–3097.
  • Cemin F, Boeira CD, Figueroa CA. On the understanding of the silicon-containing adhesion interlayer in DLC deposited on steel. Tribol Int. 2016;94:464–469.
  • Hutchinson JW, He MY, Evans AG. The influence of imperfections on the nucleation and propagation of buckling driven delaminations. J Mech Phys Solids. 2000;48(4):709–734.
  • Yu HH, He MY, Hutchinson JW. Edge effects in thin film delamination. Acta Mater. 2001;49(1):93–107.
  • Xie ZH, Singh R, Bendavid A, et al. Contact damage evolution in a diamond-like carbon (DLC) coating on a stainless steel substrate. Thin Solid Films. 2007;515(6):3196–3201.
  • Staia MH, Puchi-Cabrera ES, Iost A, et al. Sliding wear of a-C:H coatings against alumina in corrosive media. Diam Relat Mater. 2013;38:139–147.
  • Teoh SH. Fatigue of biomaterials: a review. Int J Fatigue. 2000;22(10):825–837.
  • Schaufler J, Durst K, Haas T, et al. The influence of hydrogenated amorphous carbon coatings (a-C:H) on the fatigue life of coated steel specimens. Int J Fatigue. 2012;37:1–7.
  • Sundaram VS. Diamond like carbon film as a protective coating for high strength steel and titanium alloy. Surf Coat Tech. 2006;201(6):2707–2711.
  • Puchi-Cabrera ES, Staia MH, Ochoa-Pérez EA, et al. Fatigue behavior of a 316L stainless steel coated with a DLC film deposited by PVD magnetron sputter ion plating. Mater Sci Eng A. 2010;527(3):498–508.
  • Laribi MA, Tamboura S, Fitoussi J, et al. Fast fatigue life prediction of short fiber reinforced composites. Int J Innov Res Sci Eng Technol. 2015;4(5):3659–3664.
  • Thorwarth G, Falub CV, Müller U, et al. Tribological behavior of DLC-coated articulating joint implants. Acta Biomater. 2010;6(6):2335–2341.
  • Crockett R. Boundary lubrication in natural articular joints. Tribol Lett. 2009;35(2):77–84.
  • Igual Munoz A, Schwiesau J, Jolles BM, et al. In vivo electrochemical corrosion study of a CoCrMo biomedical alloy in human synovial fluids. Acta Biomater. 2015;21:228–236.
  • Hauert R, Muller U, Francz G, et al. Surface analysis and bioreactions of F and Si containing a-C:H. Thin Solid Films. 1997;308:191–194.
  • Zhao J, Poirier DM. Characterization of cobalt silicide formation by X-ray photoelectron spectroscopy. I CoSi Surf Sci Spectra. 2000;7:322–328.
  • Lopez JAL, Lopez JC, Valerdi DEV, et al. Morphological, compositional, structural, and optical properties of Si-nc embedded in SiOx films. Nanoscale Res Lett. 2012;7:1–10.
  • Pardo A, Gómez-Aleixandre C, Celis JP, et al. Friction and wear behavior of plasma assisted chemical vapor deposited nanocomposites made of metal nanoparticles embedded in a hydrogenated amorphous carbon matrix. Surf Coat Tech. 2012;206(13):3116–3124.
  • Bruinink A. Handbook of Biomaterials. New York (NY): John Wiley & Sons Inc; 2019.
  • Tokoro M, Aiyama Y, Masuko M, et al. Improvement of tribological characteristics under water lubrication of DLC-coatings by surface polishing. Wear. 2009;267(12):2167–2172.
  • Sutton DC, Limbert G, Stewart D, et al. The friction of diamond-like carbon coatings in a water environment. Friction. 2013;1(3):210–221.
  • Zhang TF, Xie D, Huang N, et al. The effect of hydrogen on the tribological behavior of diamond like carbon (DLC) coatings sliding against Al2O3 in water environment. Surf Coat Tech. 2017;320:619–623.
  • Koshigan KD, Mangolini F, McClimon JB, et al. Understanding the hydrogen and oxygen gas pressure dependence of the tribological properties of silicon oxide–doped hydrogenated amorphous carbon coatings. Carbon. 2015;93:851–860.
  • Jiang J, Zhang S, Arnell RD. The effect of relative humidity on wear of a diamond-like carbon coating. Surf Coat Tech. 2003;167(2):221–225.
  • Roba M, Naka M, Gautier E, et al. The adsorption and lubrication behavior of synovial fluid proteins and glycoproteins on the bearing-surface materials of hip replacements. Biomaterials. 2009;30(11):2072–2078.
  • Munoz AIMS. Interactive effects of albumin and phosphate ions on the corrosion of CoCrMo implant alloy. J Electrochem Soc. 2007;154(10):562–570.
  • Stromeyer CE. The determination of fatigue limits under alternating stress conditions. Proc R Soc Lon Ser A. 1914;90(620):411–425.
  • Park ES. Understanding of the shear bands in amorphous metals. Appl Microsc. 2015;45(2):63–73.
  • Zehringer R, Hauert R. Depth profile analysis of the C/Si interface-Comparison of destructive and nondestructive techniques. Surf Sci. 1992;262(1–2):21–24.