7,412
Views
35
CrossRef citations to date
0
Altmetric
Engineering and Structural Materials

Synthesis and modelling of the mechanical properties of Ag, Au and Cu nanowires

&
Pages 225-261 | Received 25 May 2018, Accepted 16 Feb 2019, Published online: 22 Mar 2019

References

  • Cahn JW, Lärché F. Surface stress and the chemical equilibrium of small crystals-II. Solid particles embedded in a solid matrix. Acta Metall. 1982;30(1):51–56.
  • Azizi A, Zou X, Ercius P, et al. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat Commun. 2014;5:4867.
  • Qin Q, Yin S, Cheng G, et al. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat Commun. 2015;6:5983.
  • Lee S, Im J, Yoo Y, et al. Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM. Nat Commun. 2014;5:3033.
  • Wang YH, Xiong NN, Li ZL, et al. A comprehensive study of silver nanowires filled electrically conductive adhesives. J Mater Sci. 2015;26(10):7927–7935.
  • Khalil A, Singh Lalia B, Hashaikeh R, et al. Electrospun metallic nanowires: synthesis, characterization, and applications. J Appl Phys. 2013;114(17):171301.
  • Sayyar M, Soroushian P, Abdol N, et al. High performance pseudoelastic metal nanowire reinforced elastomeric composite. Ind Eng Chem Res. 2014;53(34):13329–13339.
  • Singho ND, Lah NAC, Johan MR, et al. FTIR studies on silver-poly (methylmethacrylate) nanocomposites via in-situ polymerization technique. Int J Electrochem Sci. 2012;7:5596.
  • Singho ND, Lah NAC, Johan MR, et al. Enhancement of the refractive index of silver nanoparticles in poly (methyl methacrylate). Int J Res Eng Technol. 2012;1:231–234.
  • Schultze JW, Bressel A. Principles of electrochemical micro- and nano-system technologies. Electrochim Acta. 2001;47(1–2):3–21.
  • Mao X, Rutledge GC, Hatton TA. Nanocarbon-based electrochemical systems for sensing, electrocatalysis, and energy storage. Nano Today. 2014;9(4):405–432.
  • Zheng F, Miao Y, Xinyong T, et al. In situ investigation of nanoelectrochemical systems. 14th IEEE International Conference on Nanotechnology. Toronto, Canada, August 18–21; 2014.
  • Duan X. Nanowire thin-film transistors: a new avenue to high-performance macroelectronics. IEEE Trans Electron Devices. 2008;55(11):3056–3062.
  • Wang ZL. Nanowires and nanobelts: materials, properties and devices. Volume 1: metal and semiconductor nanowires. Springer Science & Business Media. New York, USA: Springer; 2013.
  • Burt DP, Wilson NR, Weaver JMR, et al. Nanowire probes for high resolution combined scanning electrochemical microscopy − atomic force microscopy. Nano Lett. 2005;5(4):639–643.
  • Our choice from the recent literature. Nat Nano. 2014;9(1):8.
  • Hu L, Kim HS, Lee J-Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano. 2010;4(5):2955–2963.
  • Liu C-H, Yu X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res Lett. 2011;6(1):75.
  • Gonzalez-Garcia L, Maurer JHM, Reiser B, et al. Ultrathin gold nanowires for transparent electronics: breaking barriers. Procedia Eng. 2016;141:152–156.
  • Kim J, Da Silva WJ, Bin Mohd Yusoff AR, et al. Organic devices based on nickel nanowires transparent electrode. Sci Rep. 2016;6:19813.
  • Chang M-H, Cho H-A, Kim Y-S, et al. Thin and long silver nanowires self-assembled in ionic liquids as a soft template: electrical and optical properties. Nanoscale Res Lett. 2014;9(1):330.
  • Chang S-S, Shih C-W, Chen C-D, et al. The shape transition of gold nanorods. Langmuir. 1999;15(3):701–709.
  • Chirea M, Freitas A, Vasile BS, et al. Gold nanowire networks: synthesis, characterization, and catalytic activity. Langmuir. 2011;27(7):3906–3913.
  • Cruz MA, Ye S, Kim MJ, et al. Multigram synthesis of Cu‐Ag Core–shell nanowires enables the production of a highly conductive polymer filament for 3D printing electronics. Part Part Syst Charact. 2018;35(5):1700385.
  • Guo H, Büchel M, Li X, et al. Dictating anisotropic electric conductivity of a transparent copper nanowire coating by the surface structure of wood. J Royal Soc Interface. 2018;15(142):20170864.
  • Zhao H, Ning Y, Zhao B, et al. Tunable growth of silver nanobelts on monolithic activated carbon with size-dependent plasmonic response. Sci Rep. 2015;5:13587.
  • Patarroyo J, Genç A, Arbiol J, et al. One-pot polyol synthesis of highly monodisperse short green silver nanorods. Chem Comm. 2016;52(73):10960–10963.
  • Chen J, Bi H, Sun S, et al. Highly conductive and flexible paper of 1D silver-nanowire-doped graphene. ACS Appl Mater Interfaces. 2013;5(4):1408–1413.
  • Han J, Fang L, Sun J, et al. Length-dependent mechanical properties of gold nanowires. J Appl Phys. 2012;112(11):114314.
  • Gall K, Diao J, Dunn ML. The strength of gold nanowires. Nano Lett. 2004;4(12):2431–2436.
  • Ramachandramoorthy R, Gao W, Bernal R, et al. High strain rate tensile testing of silver nanowires: rate-dependent brittle-to-ductile transition. Nano Lett. 2015;16(1):255–263.
  • Kang HS, Choi J, Cho W, et al. Silver nanowire networks embedded in a cure-controlled optical adhesive film for a transparent and highly conductive electrode. J Mater Chem C. 2016;4(41):9834–9840.
  • Wu J, Zang J, Rathmell AR, et al. Reversible sliding in networks of nanowires. Nano Lett. 2013;13(6):2381–2386.
  • Sun L, He X, Lu J. Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts. NPJ Comput Mater. 2018;4(1):6.
  • Wang L, Zhang Z, Han X. In situ experimental mechanics of nanomaterials at the atomic scale. Npg Asia Mater. 2013;5:e40.
  • Yue Y, Liu P, Zhang Z, et al. Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 2011;11(8):3151–3155.
  • Zhang JJ, Yan YD, Liu X, et al. Influence of coherent twin boundaries on three-point bending of gold nanowires. J Phys D Appl Phys. 2014;47(19):195301.
  • Tavazza F, Levine LE, Chaka AM. Simulation approaches for studying the conductance behavior of gold nanowires during tensile deformation. Model Simul Mat Sci Eng. 2011;19(7):074001.
  • Zhang C, Hao X-L, Wang C-X, et al. Thermal conductivity of graphene nanoribbons under shear deformation: a molecular dynamics simulation. Sci Rep. 2017;7:41398.
  • Reischl B, Rohl AL, Kuronen A, et al. Atomistic simulation of the measurement of mechanical properties of gold nanorods by AFM. Sci Rep. 2017;7(1):16257.
  • Zhu J, Xu X, Liu J, et al. Facile synthesis of oleylamine-capped silver nanowires and their application in transparent conductive electrodes. RSC Adv. 2015;5(90):74126–74131.
  • Nandikonda S, Davis EW. Parameters affecting the microwave-assisted polyol synthesis of silver nanorods. ISRN Nanotechnol. 2011;2011:7.
  • Leach AM, McDowell M, Gall K. Deformation of top-down and bottom-up silver nanowires. Adv Funct Mater. 2007;17(1):43–53.
  • Coskun S, Aksoy B, Unalan HE. Polyol synthesis of silver nanowires: an extensive parametric study. Cryst Growth Des. 2011;11(11):4963–4969.
  • Fievet F, Lagier J, Blin B, et al. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion. 1989;32:198–205.
  • Koczkur KM, Mourdikoudis S, Polavarapu L, et al. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015;44(41):17883–17905.
  • Da Silva RR, Yang M, Choi S-I, et al. Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated polyol method. ACS Nano. 2016;10(8):7892–7900.
  • Zhang M, Zhang Y, Liu P, et al. Template control preparation of high-density and large-area Ag nanowire array and H2O2 determination. Int J Electrochem Sci. 2015;10:4314–4323.
  • Gao X, Lu F, Dong B, et al. Facile synthesis of gold and gold-based alloy nanowire networks using wormlike micelles as soft templates. Chem Comm. 2015;51(5):843–846.
  • Lu X, Yavuz MS, Tuan H-Y, et al. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine−AuCl complexes formed via aurophilic interaction. J Am Chem Soc. 2008;130(28):8900–8901.
  • Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry. 2015.
  • Chen X, Wang J, Odoom-Wubah T, et al. Microorganism-assisted synthesis of Au/Pd/Ag nanowires. Mater Lett. 2016;165:29–32.
  • Zhang X-Y, Xue X-M, Zhou H-L, et al. Seeds screening aqueous synthesis, multiphase interfacial separation and in-situ optical characterization of invisible ultrathin silver nanowires. Nanoscale, 10(33):15468–15484; 2018.
  • Yun HD, Seo DM, Lee MY, et al. Effective synthesis and recovery of silver nanowires prepared by tapered continuous flow reactor for flexible and transparent conducting electrode. Metals. 2016;6(1):14.
  • Zhang B, Liu D, Liang Y, et al. Flexible transparent and conductive films of reduced-graphene-oxide wrapped silver nanowires. Mater Lett. 2017;201:50–53.
  • Shah V, Bharatiya B, Mishra M, et al. Molecular insights into sodium dodecyl sulphate mediated control of size for silver nanoparticles. J Mol Liq. 2019;273:222–230.
  • Shukla AK, Iravani S. Metallic nanoparticles: green synthesis and spectroscopic characterization. Environ Chem Lett. 2017;15(2):223–231.
  • Iravani S, Thota S, Crans D. Methods for preparation of metal nanoparticles. In Sreekanth Thota (Ed.), Metal nanoparticles: synthesis and applications in pharmaceutical sciences. Weinheim: Wiley-VCH; 2018. p. 15–31.
  • Abdolmaleki A, Mallakpour S, Azimi F. Microwave-assisted treatment of MWCNTs with vitamin B2: study on morphology, tensile and thermal behaviors of poly (vinyl alcohol) based nanocomposites. Eur Polym J. 2017;87:277–285.
  • Deng B, Hsu P-C, Chen G, et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 2015;15(6):4206–4213.
  • Daupor H, Wongnawa S. Flower-like Ag/AgCl microcrystals: synthesis and photocatalytic activity. Mater Chem Phys. 2015;159:71–82.
  • Sheikh MUD, Naikoo GA, Thomas M, et al. Surfactant-assisted morphological tuning of porous metallic silver sponges: facile synthesis, characterization and catalytic performance. J Sol Gel Sci Techn. 2015;76(3):572–581.
  • Şimşek M, Rzayev ZM, Acar S, et al. Novel colloidal nanofiber electrolytes from PVA‐organoclay/poly (MA‐alt‐MVE), and their NaOH and Ag‐carrying polymer complexes. Polym Eng Sci. 2016;56(2):204–213.
  • Chang I, Lee J, Lee Y, et al. Thermally stable Ag@ ZrO2 core-shell via atomic layer deposition. Mater Lett. 2017;188:372–374.
  • Lah NAC, Johan MR, Samykano M, et al. Truncated and spheroidal Ag nanoparticles: a matter of size transformation. Colloid Polym Sci. 2018;296(1):121–131.
  • Lah NAC, Samykano M, Johan MR, et al. Plasmonic behaviour of phenylenediamine functionalised silver nanoparticles. Mater Res Express. 2017;4(9):095018.
  • Lah NAC, Zubir MNM, Samykano MAL. Chapter 20 - engineered nanomaterial in electronics and electrical industries. In: Mustansar Hussain C, editor. Handbook of nanomaterials for industrial applications. Cambridge, USA: Elsevier; 2018. p. 324–364.
  • Skrabalak SE, Wiley BJ, Kim M, et al. On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett. 2008;8(7):2077–2081.
  • Tao Y, Tao Y, Wang B, et al. A facile approach to a silver conductive ink with high performance for macroelectronics. Nanoscale Res Lett. 2013;8(1):296.
  • Yin Z, Song SK, You DJ, et al. Novel synthesis, coating, and networking of curved copper nanowires for flexible transparent conductive electrodes. Small. 2015;11(35):4576–4583.
  • Zhang A, Zhou J, Das P, et al. Revisiting metal electrodeposition in porous anodic alumina: toward tailored preparation of metal nanotube arrays. J Electrochem Soc. 2018;165(3):D129–D134.
  • Zhu -J-J, Kan C-X, Wan J-G, et al. High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process. J Nanomater. 2011;2011:7.
  • Amirjani A, Marashi P, Fatmehsari DH. Effect of AgNO3 addition rate on aspect ratio of CuCl2–mediated synthesized silver nanowires using response surface methodology. Colloids Surf A Physicochem Eng Asp. 2014;444:33–39.
  • Amirjani A, Marashi P, Fatmehsari DH. The effects of physicochemical parameters on the synthesis of silver nanowires via polyol method. Int Nano Lett. 2014;4(2):108.
  • Zhou Y, Fichthorn KA. Internal stress-induced orthorhombic phase in 5-fold-twinned noble metal nanowires. J Phys Chem C. 2014;118(32):18746–18755.
  • Nurul Akmal Che L. Synthesis and characterization studies of silver nanoparticles, in department of mechanical engineering, faculty of engineering. Kuala Lumpur, Malaysia: University of Malaya; 2008.
  • Lah NAC. Conductivity studies of the size-induced metal-insulator transition (SIMIT) in silver nanoparticles. 2015
  • Nurul Akmal Che LMRJ. Highly potential properties of Ag nanostructures: controlled synthesis and characterization. 11th International conference on advanced materials. Brazil; 2009.
  • Lah NAC, Johan MR. Facile shape control synthesis and optical properties of silver nanoparticles stabilized by Daxad 19 surfactant. Appl Surf Sci. 2011;257(17):7494–7500.
  • Korte KE, Skrabalak SE, Xia Y. Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J Mater Chem. 2008;18(4):437–441.
  • Tsuji M, Matsumoto K, Jiang P, et al. Roles of Pt seeds and chloride anions in the preparation of silver nanorods and nanowires by microwave-polyol method. Colloids Surf A Physicochem Eng Asp. 2008;316(1):266–277.
  • Zheng Y, Zeng J, Ruditskiy A, et al. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem Mater. 2014;26(1):22–33.
  • Gou L, Chipara M, Zaleski JM. Convenient, rapid synthesis of Ag nanowires. Chem Mater. 2007;19(7):1755–1760.
  • Dapeng C, Xueliang Q, Xiaolin Q, et al. Convenient, rapid synthesis of silver nanocubes and nanowires via a microwave-assisted polyol method. Nanotechnology. 2010;21(2):025607.
  • Wiley B, Sun Y, Xia Y. Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res. 2007;40(10):1067–1076.
  • Wan Y, Yang H, Zhao D. “Host−guest” chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Acc Chem Res. 2006;39(7):423–432.
  • Sun Y, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002;2(2):165–168.
  • Sun Y, Xia Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater. 2002;14(11):833–837.
  • Wang ZL, Mohamed MB, Link S, et al. Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf Sci. 1999;440(1):L809–L814.
  • Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem A. 2001;105(19):4065–4067.
  • Gole A, Murphy CJ. Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater. 2004;16(19):3633–3640.
  • Kim F, Song JH, Yang P. Photochemical synthesis of gold nanorods. J Am Chem Soc. 2002;124(48):14316–14317.
  • Dickerson EB, Dreaden EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008;269(1):57–66.
  • Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15(10):1957–1962.
  • Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater. 2001;13(18):1389–1393.
  • Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, et al. Gold nanorods: synthesis, characterization and applications. Coord Chem Rev. 2005;249(17):1870–1901.
  • Kumar S, Naqvi AZ, Kabir Ud D. Micellar morphology in the presence of salts and organic additives. Langmuir. 2000;16(12):5252–5256.
  • Abezgauz L, Kuperkar K, Hassan PA, et al. Effect of Hofmeister anions on micellization and micellar growth of the surfactant cetylpyridinium chloride. J Colloid Interface Sci. 2010;342(1):83–92.
  • Pallares RM, Su X, Lim SH, et al. Fine-tuning of gold nanorod dimensions and plasmonic properties using the Hofmeister effects. J Mater Chem C. 2016;4(1):53–61.
  • Wadams RC, Fabris L, Vaia RA, et al. Time-dependent susceptibility of the growth of gold nanorods to the addition of a cosurfactant. Chem Mater. 2013;25(23):4772–4780.
  • Cui F, Yu Y, Dou L, et al. Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett. 2015;15(11):7610–7615.
  • Hwang C, An J, Choi BD, et al. Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode. J Mater Chem C. 2016;4(7):1441–1447.
  • Ye S, Stewart IE, Chen Z, et al. How copper nanowires grow and how to control their properties. Acc Chem Res. 2016;49(3):442–451.
  • Zhao S, Han F, Li J, et al. Advancements in copper nanowires: synthesis, purification, assemblies, surface modification, and applications. Small. 2018;14(26):1800047.
  • Nielsch K, Choi J, Schwirn K, et al. Self-ordering regimes of Porous Alumina: the 10 Porosity Rule. Nano Lett. 2002;2(7):677–680.
  • Tamon H, Ishizaka H, Yamamoto T, et al. Preparation of mesoporous carbon by freeze drying. Carbon. 1999;37(12):2049–2055.
  • Wan Y, Zhao, Zhao D. On the controllable soft-templating approach to mesoporous silicates. Chem Rev. 2007;107(7):2821–2860.
  • Keilbach A, Moses J, Köhn R, et al. Electrodeposition of copper and silver nanowires in hierarchical mesoporous silica/anodic alumina nanostructures. Chem Mater. 2010;22(19):5430–5436.
  • Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater. 2006;18(16):2073–2094.
  • Wan Y, Shi Y, Zhao D. Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem Comm. 2007;9:897–926.
  • Lu AH, Schüth F. Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater. 2006;18(14):1793–1805.
  • Lu Y. Surfactant-templated mesoporous materials: from inorganic to hybrid to organic. Angew Chem. 2006;45(46):7664–7667.
  • Wan M, Zhao W, Peng F, et al. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates. Sci Rep. 2016;6:30906.
  • Yuan J, Xu Y, Muller AHE. One-dimensional magnetic inorganic-organic hybrid nanomaterials. Chem Soc Rev. 2011;40(2):640–655.
  • Jui-Hsiang L, Ching-Yi T, Yi-Hong C, et al. The fabrication of polycrystalline silver nanowires via self-assembled nanotubes at controlled temperature. Nanotechnology. 2009;20(3):035301.
  • Ariga K, Yamauchi Y, Rydzek G, et al. Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett. 2013;43(1):36–68.
  • Zhang H, Tsuchiya T, Liang C, et al. Size-controlled AgI/Ag heteronanowires in highly ordered alumina membranes: superionic phase stabilization and conductivity. Nano Lett. 2015;15(8):5161–5167.
  • Fu Q, Zhan Z, Dou J, et al. Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique. ACS Appl Mater Interfaces. 2015;7(24):13322–13328.
  • Schubert I, Burr L, Trautmann C, et al. Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes. Beilstein J Nanotechnol. 2015;6:1272.
  • Zhu X, Wang C, Fu Q, et al. Preparation of Ag/Cu Janus nanowires: electrodeposition in track-etched polymer templates. Nucl Instrum Methods Phys Res A. 2015;356:57–61.
  • Boehm SJ, Lin L, Guzmán Betancourt K, et al. Formation and frequency response of two-dimensional nanowire lattices in an applied electric field. Langmuir. 2015;31(21):5779–5786.
  • Turco A, Mazzotta E, Di Franco C, et al. Templateless synthesis of polypyrrole nanowires by non-static solution-surface electropolymerization. J Solid State Electrochem. 2016;20(8):2143–2151.
  • Li P, Liu N, Yu H, et al. Silver nanostructures synthesis via optically induced electrochemical deposition. Sci Rep. 2016;6:28035.
  • Serrà A, Vallés E. Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: fundamentals and applications. Appl Mater Today. 2018;12:207–234.
  • Singh R. Template Based Approach for Fabrication of Nano Micro Structures and their Characterization, in Department of Physics. National Institute of Technology; 2018.
  • Chen Y, Zhao H, Ning Y, et al. Spontaneous growth of silver nanotrees dominated with (111) crystalline faces on monolithic activated carbon. RSC Adv. 2016;6(104):102528–102533.
  • Feng Y, Kim K-D, Nemitz CA, et al. Uniform large-area free-standing silver nanowire arrays on transparent conducting substrates. J Electrochem Soc. 2016;163(8):D447–D452.
  • Liu Y, Chu Y, Yang L, et al. A novel solution-phase route for the synthesis of crystalline silver nanowires. Mater Res Bull. 2005;40(10):1796–1801.
  • Liu W, Yang T, Liu J, et al. Controllable synthesis of silver dendrites via an interplay of chemical diffusion and reaction. Ind Eng Chem Res. 2016;55(30):8319–8326.
  • Hulteen JC, Martin CR. A general template-based method for the preparation of nanomaterials. J Mater Chem. 1997;7(7):1075–1087.
  • Martin CR. Template synthesis of electronically conductive polymer nanostructures. Acc Chem Res. 1995;28(2):61–68.
  • Martin CR. Nanomaterials: a membrane-based synthetic approach. Science. 1994;266(5193):1961–1966.
  • Foss CA, Hornyak GL, Stockert JA, et al. Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape. J Phys Chem. 1994;98(11):2963–2971.
  • Jajcevic K, Chami M, Sugihara K. Gold nanowire fabrication with surface-attached lipid nanotube templates. Small. 2016;12(35):4830–4836.
  • Bell TE, Gennissen PTJ, DeMunter D, et al. Porous silicon as a sacrificial material. J Micromech Microeng. 1996;6(4):361.
  • Seals L, Gole JL, Tse LA, et al. Rapid, reversible, sensitive porous silicon gas sensor. J Appl Phys. 2002;91(4):2519–2523.
  • Aravamudhan S, Luongo K, Poddar P, et al. Porous silicon templates for electrodeposition of nanostructures. Appl Phys A. 2007;87(4):773–780.
  • Yoo S-H, Park S. Platinum-coated, nanoporous gold nanorod arrays: synthesis and characterization. Adv Mater. 2007;19(12):1612–1615.
  • Kanno Y, Suzuki T, Yamauchi Y, et al. Preparation of Au nanowire films by electrodeposition using mesoporous silica films as a template: vital effect of vertically oriented mesopores on a substrate. J Phys Chem C. 2012;116(46):24672–24680.
  • LaMer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc. 1950;72(11):4847–4854.
  • Hujdic JE, Sargisian AP, Shao J, et al. High-density gold nanowire arrays by lithographically patterned nanowire electrodeposition. Nanoscale. 2011;3(7):2697–2699.
  • Yao H, Duan J, Mo D, et al. Optical and electrical properties of gold nanowires synthesized by electrochemical deposition. J Appl Phys. 2011;110(9):094301.
  • Juſík T, Podešva P, Farka Z, et al. Nanostructured gold deposited in gelatin template applied for electrochemical assay of glucose in serum. Electrochim Acta. 2016;188:277–285.
  • Leo BF, Lah NAC, Samykano M, et al. Disinfection. In: Das R, editor. Carbon nanotubes for clean water. Cham: Springer International Publishing; 2018. p. 151–170.
  • Butler PJ. Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed. Philos Trans R Soc Lond B Biol Sci. 1999;354(1383):537–550.
  • Wang D-P, Sun D-B, Yu H-Y, et al. Preparation of one-dimensional nickel nanowires by self-assembly process. Mater Chem Phys. 2009;113(1):227–232.
  • Fu J, Cherevko S, Chung C-H. Electroplating of metal nanotubes and nanowires in a high aspect-ratio nanotemplate. Electrochem commun. 2008;10(4):514–518.
  • Muench F, Oezaslan M, Seidl T, et al. Multiple activation of ion track etched polycarbonate for the electroless synthesis of metal nanotubes. Appl Phys A. 2011;105(4):847–854.
  • Dong J, Ren L, Zhang Y, et al. Direct electrodeposition of cable-like CuO@Cu nanowires array for non-enzymatic sensing. Talanta. 2015;132:719–726.
  • Boussaad S, Tao N. Atom-size gaps and contacts between electrodes fabricated with a self-terminated electrochemical method. Appl Phys Lett. 2002;80(13):2398–2400.
  • Li C, He H, Tao N. Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching. Appl Phys Lett. 2000;77(24):3995–3997.
  • Janin M, Ghilane J, Lacroix J-C. Scanning electrochemical microscopy for the fabrication of copper nanowires: atomic contacts with quantized conductance, and molecular adsorption effect. Electrochim Acta. 2012;83:7–12.
  • Goux A, Ghanbaja J, Walcarius A. Prussian blue electrodeposition within an oriented mesoporous silica film: preliminary observations. J Mater Sci. 2009;44(24):6601–6607.
  • Ding L, Li W, Wang Q, et al. Vertically oriented silica mesochannels as the template for electrodeposition of polyaniline nanostructures and their electrocatalytic and electroanalytical applications. Chem Eur J. 2014;20(7):1829–1833.
  • Vilà N, Ghanbaja J, Aubert E, et al. Electrochemically assisted generation of highly ordered azide-functionalized mesoporous silica for oriented hybrid films. Angew Chem. 2014;53(11):2945–2950.
  • Guo J, Zhao X, Hu J, et al. Tobacco mosaic virus with peroxidase-like activity for cancer cell detection through colorimetric assay. Mol Pharm. 2018;15(8):2946–2953.
  • Zhang Y, Chu W, Foroushani A, et al. New gold nanostructures for sensor applications: a review. Materials. 2014;7(7):5169–5201.
  • Seshadri I, Esquenazi GL, Cardinal T, et al. Microwave synthesis of branched silver nanowires and their use as fillers for high thermal conductivity polymer composites. Nanotechnology. 2016;27(17):175601.
  • Gomez-Acosta A, Manzano-Ramirez A, López-Naranjo E, et al. Silver nanostructure dependence on the stirring-time in a high-yield polyol synthesis using a short-chain PVP. Mater Lett. 2015;138:167–170.
  • Murph SEH, Murphy CJ, Leach A, et al. A possible oriented attachment growth mechanism for silver nanowire formation. Cryst Growth Des. 2015;15(4):1968–1974.
  • Jiang Y, Xi J, Wu Z, et al. Highly transparent, conductive, flexible resin films embedded with silver nanowires. Langmuir. 2015;31(17):4950–4957.
  • Chen -J-J, Liu S-L, Wu H-B, et al. Structural regulation of silver nanowires and their application in flexible electronic thin films. Mater Des. 2018;154:266–274.
  • Xu F, Xu W, Mao B, et al. Preparation and cold welding of silver nanowire based transparent electrodes with optical transmittances > 90% and sheet resistances < 10 ohm/sq. J Colloid Interface Sci. 2018;512:208–218.
  • Silin L, Haitao L, Zhaohui H, et al. Novel method of ordering silver nanowires for synthesizing flexible films and their conductivity. Mater Res Express. 2016;3(11):115022.
  • Yang TL, Pan CT, Chen YC, et al. Synthesis and fabrication of silver nanowires embedded in PVP fibers by near-field electrospinning process. Opt Mater. 2015;39:118–124.
  • Liu H, Li L, Scofield ME, et al. Research Update: synthesis, properties, and applications of ultrathin metallic nanowires and associated heterostructures. APL Mater. 2015;3(8):080701.
  • Wünnemann P, Noyong M, Kreuels K, et al. Microstructured hydrogel templates for the formation of conductive gold nanowire arrays. Macromol Rapid Commun. 2016;37(17):1446–1452.
  • Orza A, Pruneanu S, Soritau O, et al. Single-step synthesis of gold nanowires using biomolecules as capping agent/template: applications for tissue engineering. Part Sci Technol. 2013;31(6):658–662.
  • Wnęk M, Górzny MŁ, Ward M, et al. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins. Nanotechnology. 2012;24(2):025605.
  • Stortini AM, Moretto LM, Mardegan A, et al. Arrays of copper nanowire electrodes: preparation, characterization and application as nitrate sensor. Sens Actuators B Chem. 2015;207:186–192.
  • Li X, Wang Y, Lei Y, et al. Highly sensitive H2S sensor based on template-synthesized CuO nanowires. RSC Adv. 2012;2(6):2302–2307.
  • Kumar S, Saini D, Lotey GS, et al. Electrochemical synthesis of copper nanowires in anodic alumina membrane and their impedance analysis. Superlattices Microstruct. 2011;50(6):698–702.
  • Irshad M, Ahmad F, Mohamed N, et al. Preparation and structural characterization of template assisted electrodeposited copper nanowires. Int J Electrochem Sci. 2014;9(5):2548–2555.
  • Virk HS, Kishore K, Balouria V. Fabrication of copper nanowires by electrodeposition using anodic alumina and polymer templates. J Nano Res. 2010. Trans Tech Publ.
  • Liu X, Cui S, Sun Z, et al. Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation. Electrochim Acta. 2015;160:202–208.
  • Prună A, Branzoi V, Branzoi F. Ordered arrays of copper nanowires enveloped in polyaniline nanotubes. J Appl Electrochem. 2011;41(1):77–81.
  • Zhou JC, Soto CM, Chen M-S, et al. Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires. J Nanobiotechnology. 2012;10(1):18.
  • Demir M, Stowell MH. A chemoselective biomolecular template for assembling diverse nanotubular materials. Nanotechnology. 2002;13(4):541.
  • Lee S-Y, Culver JN, Harris MT. Effect of CuCl2 concentration on the aggregation and mineralization of Tobacco mosaic virus biotemplate. J Colloid Interface Sci. 2006;297(2):554–560.
  • Balci S, Bittner A, Hahn K, et al. Copper nanowires within the central channel of tobacco mosaic virus particles. Electrochim Acta. 2006;51(28):6251–6257.
  • Bonev I. On the terminology of the phenomena of mutual crystal orientation. Acta Crystallogr A. 1972;28(6):508–512.
  • Bennett P, He Z, Smith DJ, et al. Endotaxial silicide nanowires: a review. Thin Solid Films. 2011;519(24):8434–8440.
  • Juluri R, Rath A, Ghosh A, et al. Substrate symmetry driven endotaxial silver nanostructures by chemical vapor deposition. J Phys Chem C. 2013;117(25):13247–13251.
  • Nason T, Yang GR, Park KH, et al. Study of silver diffusion into Si (111) and SiO2 at moderate temperatures. J Appl Phys. 1991;70(3):1392–1396.
  • Elliott PR, Stagon SP, Huang H. Control of separation and diameter of ag nanorods through self-organized seeds. Sci Rep. 2015;5:16826.
  • Vitos L, Ruban A, Skriver HL, et al. The surface energy of metals. Surf Sci. 1998;411(1–2):186–202.
  • Brunauer S, Kantro D, Weise C. The surface energies of amorphous silica and hydrous amorphous silica. Can J Chem. 1956;34(10):1483–1496.
  • Hawkeye MM, Brett MJ. Glancing angle deposition: fabrication, properties, and applications of micro-and nanostructured thin films. J Vac Sci Technol A. 2007;25(5):1317–1335.
  • Robbie K, Brett M. Sculptured thin films and glancing angle deposition: growth mechanics and applications. J Vac Sci Technol A. 1997;15(3):1460–1465.
  • Kennedy SR, Brett MJ, Toader O, et al. Fabrication of tetragonal square spiral photonic crystals. Nano Lett. 2002;2(1):59–62.
  • Adelung R, Aktas OC, Franc J, et al. Strain-controlled growth of nanowires within thin-film cracks. Nat Mater. 2004;3(6):375.
  • Reed MA, Zhou C, Muller C, et al. Conductance of a molecular junction. Science. 1997;278(5336):252–254.
  • Thran A, Kiene M, Zaporojtchenko V, et al. Condensation coefficients of Ag on polymers. Phys Rev Lett. 1999;82(9):1903.
  • Šordan R, Burghard M, Kern K. Removable template route to metallic nanowires and nanogaps. Appl Phys Lett. 2001;79(13):2073–2075.
  • Milenkovic S, Schneider A, Hassel AW. Gold nanostructures by directional solid-state decomposition. Gold Bull. 2006;39(4):185–191.
  • Isaac E, Tammann G. L. Über die Legierungen des Eisens mit Platin. Z Anorg Allg Chem. 1907;55(1):63–71.
  • Jette ER, Bruner WL, Foote F. An X-ray study of the gold-iron alloys. Trans Soc Min Metall Explor Inc. 1934;111:354–359.
  • Seigle L. Thermodynamic properties of solid Fe-Au alloys. JOM. 1956;8(2):91–97.
  • Zhu Y. In situ nanomechanical testing of crystalline nanowires in electron microscopes. Jom. 2016;68(1):84–93.
  • Narayanan S, Cheng G, Zeng Z, et al. Strain hardening and size effect in five-fold twinned Ag nanowires. Nano Lett. 2015;15(6):4037–4044.
  • Magagnosc DJ, Chen W, Kumar G, et al. Thermomechanical behavior of molded metallic glass nanowires. Sci Rep. 2016;6:19530.
  • Wang S, Shan Z, Huang H. The mechanical properties of nanowires. Adv Sci. 2017;4(4):1600332-n/a.
  • Logutenko OA, Titkov AI, Vorob AMY, et al. Characterization and growth mechanism of nickel nanowires resulting from reduction of nickel formate in polyol medium. J Nanomater. 2016;2016:9.
  • Zhu Y, Moldovan N, Espinosa HD. A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl Phys Lett. 2005;86(1):013506.
  • Yu M-F, Lourie O, Dyer MJ, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000;287(5453):637–640.
  • Li X, Gao H, Murphy CJ, et al. Nanoindentation of silver nanowires. Nano Lett. 2003;3(11):1495–1498.
  • Poncharal P, Wang ZL, Ugarte D, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science. 1999;283(5407):1513–1516.
  • Cuenot S, Frétigny C, Demoustier-Champagne S, et al. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B. 2004;69(16):165410.
  • Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science. 1997;277(5334):1971–1975.
  • Wu B, Heidelberg A, Boland JJ. Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater. 2005;4(7):525–529.
  • Weik H. Whisker structure and tensile strength. J Appl Phys. 1959;30(5):791–792.
  • Brenner SS. Tensile strength of whiskers. J Appl Phys. 1956;27(12):1484–1491.
  • Uchic MD, Dimiduk DM, Florando JN, et al. Sample dimensions influence strength and crystal plasticity. Science. 2004;305(5686):986–989.
  • Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation. Phys Rev B. 2006;73(24):245410.
  • Zhu T, Li J. Ultra-strength materials. Pro Mater Sci. 2010;55(7):710–757.
  • Park HS, Gall K, Zimmerman JA. Shape memory and pseudoelasticity in metal nanowires. Phys Rev Lett. 2005;95(25):255504.
  • Rubio-Bollinger G, Bahn SR, Agraït N, et al. Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys Rev Lett. 2001;87(2):026101.
  • Marszalek PE, Greenleaf WJ, Li H, et al. Atomic force microscopy captures quantized plastic deformation in gold nanowires. Proc Nat Acad Sci. 2000;97(12):6282–6286.
  • Jing GY, Duan HL, Sun XM, et al. Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B. 2006;73(23):235409.
  • Diao J, Gall K, Dunn ML. Surface-stress-induced phase transformation in metal nanowires. Nat Mater. 2003;2(10):656–660.
  • Park HS, Zimmerman JA. Modeling inelasticity and failure in gold nanowires. Phys Rev B. 2005;72(5):054106.
  • Filleter T, Ryu S, Kang K, et al. Nucleation-controlled distributed plasticity in penta-twinned silver nanowires. Small. 2012;8(19):2986–2993.
  • Scherer T, Zhong S, Wang D. Probing the mechanical properties of metal wires at small scale by microscopy. Microsc Microanal. 2010;16(S2:1778–1779.
  • Zhang Q, Li H, Gan L, et al. In situ fabrication and investigation of nanostructures and nanodevices with a microscope. Chem Soc Rev. 2016;45(9):2694–2713.
  • Qu J, Lee M, Hilke M, et al. Investigating the impact of SEM chamber conditions and imaging parameters on contact resistance of in situ nanoprobing. Nanotechnology. 2017;28(34):345702.
  • Zhu Y, Qin Q, Fan F, et al. Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys Rev B. 2012;85(4):045443.
  • Peng P, He P, Zou G, et al. Interfacial nano-mechanical properties of copper joints bonded with silver nanopaste near room temperature. Mater Trans. 2015;56(7):1010–1014.
  • Bansal S, Toimil-Molares E, Saxena A, et al. Nanoindentation of single crystal and polycrystalline copper nanowires in Proceedings Electronic Components and Technology, 2005. ECTC '05., Lake Buena Vista, FL, 2005;1:71–76.
  • Haque MA, Espinosa HD, Lee HJ. MEMS for in situ testing—handling, actuation, loading, and displacement measurements. MRS Bull. 2010;35(5):375–381.
  • Lu Y, Ganesan Y, Lou J. A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device. Exp Mech. 2010;50(1):47–54.
  • Ganesan Y, Lu Y, Peng C, et al. Development and application of a novel microfabricated device for the in situ tensile testing of 1-D nanomaterials. J Microelectromech Syst. 2010;19(3):675–682.
  • Qin Q, Zhu Y. Temperature control in thermal microactuators with applications to in-situ nanomechanical testing. Appl Phys Lett. 2013;102(1):013101.
  • Yong Z, Alberto C, Horacio DE. A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J Micromech Microeng. 2006;16(2):242.
  • Zhu Y, Espinosa HD. An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci USA. 2005;102(41):14503–14508.
  • Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids. 1998;46(3):411–425.
  • Wood EL, Avant T, Kim GS, et al. Size effects in bimetallic nickel–gold nanowires: insight from atomic force microscopy nanoindentation. Acta Materialia. 2014;66:32–43.
  • Zhang F, Feng X, Yang Z, et al. Dislocation–twin boundary interactions induced nanocrystalline via spd processing in bulk metals. Sci Rep. 2015;5:8981.
  • Shekhter RI, Entin-Wohlman O, Aharony A. Suspended nanowires as mechanically controlled rashba spin splitters. Phys Rev Lett. 2013;111(17):176602.
  • YeoI PL, de Assis, Gloppe A, et al. Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. Nat Nano. 2014;9(2):106–110.
  • Treutlein P. Optomechanics: A strained couple. Nat Nano. 2014;9(2):99–100.
  • Wu B, Heidelberg A, Boland JJ, et al. Microstructure-hardened silver nanowires. Nano Lett. 2006;6(3):468–472.
  • Chen Y, Dorgan BL, McIlroy DN, et al. On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires. J Appl Phys. 2006;100(10):104301.
  • Leclere C, Cornelius TW, Ren Z, et al. In situ bending of an Au nanowire monitored by micro Laue diffraction. J Appl Crystallogr. 2015;48(Pt 1):291–296.
  • Ren Z, Mastropietro F, Davydok A, et al. Scanning force microscope for in situ nanofocused X-ray diffraction studies. J Synchrotron Radiat. 2014;21(5):1128–1133.
  • Cornelius TW, Davydok A, Jacques VLR, et al. In situ three-dimensional reciprocal-space mapping during mechanical deformation. J Synchrotron Radiat. 2012;19(5):688–694.
  • Luo W, Roundy D, Cohen ML, et al. Ideal strength of bcc molybdenum and niobium. Phys Rev B. 2002;66(9):094110.
  • Clatterbuck DM, Krenn CR, Cohen ML, et al. Phonon instabilities and the ideal strength of aluminum. Phys Rev Lett. 2003;91(13):135501.
  • Wang L, Liu P, Guan P, et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat Commun. 2013;4:2413.
  • Wang L, Zheng K, Zhang Z, et al. Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. Nano Lett. 2011;11(6):2382–2385.
  • Cimalla V, Hlig C-C, Pezoldt J, et al. Nanomechanics of single crystalline tungsten nanowires. J Nanomater. 2008;2008:9.
  • Gianola DS, Sedlmayr A, Mönig R, et al. In situ nanomechanical testing in focused ion beam and scanning electron microscopes. Rev Sci Instrum. 2011;82(6):063901.
  • Ramachandramoorthy R, Milan M, Lin Z, et al. Design of piezoMEMS for high strain rate nanomechanical experiments. Extreme Mech Lett. 2018;20:14–20.
  • Ni C, Zhu Q, Wang J. Mechanical property of metallic nanowires: the shorter is stronger and ductile. Mater Sci Eng A. 2018;733:164–169.
  • Jiang C, Zhang H, Song J, et al. Digital micromirror device (DMD)-based high-cycle tensile fatigue testing of 1D nanomaterials. Extreme Mech Lett. 2018;18:79–85.
  • Strus M, Zalamea L, Raman A, et al. Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. Nano Lett. 2008;8(2):544–550.
  • Shin J, Cornelius T, Labat S, et al. In situ Bragg coherent X-ray diffraction during tensile testing of an individual Au nanowire. J Appl Crystallogr. 2018;51(3).
  • Davydok A, Cornelius T, Ren Z, et al. In situ coherent X-ray diffraction during three-point bending of a Au nanowire: visualization and quantification. Quantum Beam Sci. 2018;2(4):24.
  • Landman U, Luedtke WD, Burnham NA, et al. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science. 1990;248(4954):454–461.
  • Daw MS, Baskes MI. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1984;29(12):6443–6453.
  • Baskes MI, Muralidharan K, Stan M, et al. Using the modified embedded-atom method to calculate the properties of Pu-Ga alloys. JOM. 2003;55(9):41–50.
  • Diao J, Gall K, Dunn ML. Surface stress driven reorientation of gold nanowires. Phys Rev B. 2004;70(7):075413.
  • Daw MS, Baskes MI. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett. 1983;50(17):1285–1288.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136(3B):B864–B871.
  • Stott MJ, Zaremba E. Quasiatoms: an approach to atoms in nonuniform electronic systems. Phys Rev B. 1980;22(4):1564–1583.
  • Johnson LP, Matisons JG. Synthesis of high aspect-ratio gold nanowires with highly porous morphology. ISRN Nanomater. 2012;2012:9.
  • Lucas M, Leach AM, McDowell MT, et al. Plastic deformation of pentagonal silver nanowires: comparison between AFM nanoindentation and atomistic simulations. Phys Rev B. 2008;77(24):245420.
  • Lao J, Tam MN, Pinisetty D, et al. Molecular dynamics simulation of FCC metallic nanowires: a review. Jom. 2013;65(2):175–184.
  • Diao J, Gall K, Dunn ML, et al. Atomistic simulations of the yielding of gold nanowires. Acta Materialia. 2006;54(3):643–653.
  • Bernal RA, Aghaei A, Lee S, et al. Intrinsic bauschinger effect and recoverable plasticity in pentatwinned silver nanowires tested in tension. Nano Lett. 2015;15(1):139–146.
  • Weinberger CR, Cai W. Plasticity of metal nanowires. J Mater Chem. 2012;22(8):3277–3292.
  • Liang W, Zhou M. Atomistic simulations reveal shape memory of fcc metal nanowires. Phys Rev B. 2006;73(11):115409.
  • Tadmor EB, Bernstein N. A first-principles measure for the twinnability of FCC metals. J Mech Phys Solids. 2004;52(11):2507–2519.
  • Coura PZ, Legoas SB, Moreira AS, et al. On the structural and stability features of linear atomic suspended chains formed from gold nanowires stretching. Nano Lett. 2004;4(7):1187–1191.
  • Park HS, Ji C. On the thermomechanical deformation of silver shape memory nanowires. Acta Materialia. 2006;54(10):2645–2654.
  • Bitzek E, Koskinen P, Gähler F, et al. Structural relaxation made simple. Phys Rev Lett. 2006;97(17):170201.
  • Koh S, Lee H. Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires. Nanotechnology. 2006;17(14):3451.
  • McDowell MT, Leach AM, Gall K. On the elastic modulus of metallic nanowires. Nano Lett. 2008;8(11):3613–3618.
  • Wang W, Yi C, Ma B. Molecular dynamics simulation on the tensile behavior of gold nanowires with diameters between 3 and 6 nm. J Nanoeng Nanosystems. 2013;227(3):135–141.
  • Sun X-Y, Xu Y, Wang G-F, et al. Effects of surface atomistic modification on mechanical properties of gold nanowires. Phys Lett A. 2015;379(34):1893–1897.
  • Setoodeh AR, Attariani H, Khosrownejad M. Nickel nanowires under uniaxial loads: A molecular dynamics simulation study. Comput Mater Sci. 2008;44(2):378–384.
  • Gao W, Yu S, Huang G. Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology. 2006;17(4):1118.
  • Lifshitz EM, Kosevich AM, Pitaevskii LP. Theory of elasticity. 3rd ed. Oxford: Butterworth-Heinemann; 1986. p. 108–132.
  • Yvonnet J, Mitrushchenkov A, Chambaud G, et al. Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations. Comput Methods Appl Mech Eng. 2011;200(5):614–625.
  • Gurtin ME, Ian Murdoch A. A continuum theory of elastic material surfaces. Arch Ration Mech Anal. 1975;57(4):291–323.
  • Celik E, Guven I, Madenci E. Simulations of nanowire bend tests for extracting mechanical properties. Theor Appl Fract Mech. 2011;55(3):185–191.
  • Heidelberg A, Ngo LT, Wu B, et al. A generalized description of the elastic properties of nanowires. Nano Lett. 2006;6(6):1101–1106.
  • Vazinishayan A, Yang S, Duongthipthewa A, et al. Effects of cross-section on mechanical properties of Au nanowire. AIP Adv. 2016;6(2):025006.
  • Ilinov, A. Dphil Thesis, Molecular dynamics simulation of elastic and sputtering properties of nanowires, Faculty of Science, University of Helsinki, 2015. p. 56.
  • Nitzan A, Ratner MA. Electron transport in molecular wire junctions. Science. 2003;300(5624):1384–1389.
  • Triplett DA, Quimby LM, Smith BD, et al. Assembly of gold nanowires by sedimentation from suspension: experiments and simulation. J Phys Chem C. 2010;114(16):7346–7355.
  • Pu Q, Leng Y, Zhao X, et al. Molecular simulation studies on the elongation of gold nanowires in benzenedithiol. J Phys Chem C. 2010;114(23):10365–10372.
  • Girifalco LA, Weizer VG. Application of the morse potential function to cubic metals. Phys Rev. 1959;114(3):687–690.
  • Tanimori S, Shimamura S. Mechanical properties of gold nanocontacts studied by Monte Carlo simulation. J Phys Soc Jpn. 2002;71(3):797–801.
  • Tanimori, S., & Shimamura, S. (2000). Monte Carlo simulation study of mechanical properties of Au nanowires. In MSM 2000: Third International Conference on Modeling and Simulation of Microsystems (pp. 110-113). San Diego, CA.
  • Pereira Z, Da Silva E. Cold welding of gold and silver nanowires: a molecular dynamics study. J Phys Chem C. 2011;115(46):22870–22876.
  • Dexter M, Pfau A, Gao Z, et al. Modeling nanoscale temperature gradients and conductivity evolution in pulsed light sintering of silver nanowire networks. Nanotechnology. 2018;29(50):505205.
  • Sarkar J, Das DK. Evaluating the effect of different test parameters on the tensile mechanical properties of single crystal silver nanowires using molecular dynamics simulation. J Nanopart Res. 2018;20(9):247.
  • Chen C, Suganuma K. Solid porous Ag–Ag interface bonding and its application in the die-attached modules. J Mater Sci. 2018;29(15):13418–13428.
  • Pei L, Lu C, Zhao X, et al. Brittle versus ductile behaviour of nanotwinned copper: a molecular dynamics study. Acta Materialia. 2015;89:1–13.
  • Yang Y, Li Y, Yang Z, et al. Molecular dynamics simulation on the elastoplastic properties of copper nanowire under torsion. J Nanopart Res. 2018;20(2):49.
  • Paul SK. Effect of twist boundary angle on deformation behavior of <1 0 0> FCC copper nanowires. Comput Mater Sci. 2018;150:24–32.
  • Han J, Sun J, Han Y, et al. Strengthening versus softening of nanotwinned copper depending on prestress and twin spacing. Metals. 2018;8(5):344.
  • Cao Z, Sun W, Yang X, et al. Intersectant coherent twin boundaries governed strong strain hardening behavior in nanocrystalline Cu. Int J Plast. 2018;103:81–94.
  • Zhao X, Lu C, Tieu AK, et al. Deformation twinning and dislocation processes in nanotwinned copper by molecular dynamics simulations. Comput Mater Sci. 2018;142:59–71.
  • Yang Z, Zheng L, Yue Y, et al. Effects of twin orientation and spacing on the mechanical properties of Cu nanowires. Sci Rep. 2017;7(1):10056.
  • Sarkar J, Das D. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu–Ag core–shell nanowire using molecular dynamics simulations. J Nanopart Res. 2018;20(1):9.
  • Kardani A, Montazeri A. Temperature-based plastic deformation mechanism of Cu/Ag nanocomposites: a molecular dynamics study. Comput Mater Sci. 2018;144:223–231.
  • Ding S, Tian Y, Jiang Z, et al. Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint. AIP Adv. 2015;5(5):057120.