5,552
Views
32
CrossRef citations to date
0
Altmetric
Focus on Intermetallic Catalysts

The emergence of Heusler alloy catalysts

ORCID Icon, ORCID Icon & ORCID Icon
Pages 445-455 | Received 01 Feb 2019, Accepted 19 Mar 2019, Published online: 10 May 2019

References

  • Massalski TB, Okamoto H, Subramanian PR, Kacprzak L, editors. Binary alloy phase diagrams. Vol. 1, 2nd. Materials Park (OH): ASM International; 1990. p. 195–197.
  • Massalski TB, Okamoto H, Subramanian PR, Kacprzak L, editors. Binary alloy phase diagrams. Vol. 2, 2nd. Materials Park (OH): ASM International; 1990. p. 1752–1756.
  • Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44(6):1272–1276.
  • Yin M, Hasier J, Nash P. A review of phase equilibria in Heusler alloy systems containing Fe, Co or Ni. J Mater Sci. 2016;51(1):50–70.
  • Kojima T, Kameoka S, Fujii S, et al. Catalysis-tunable Heusler alloys in selective hydrogenation of alkynes: a new potential for old materials. Sci Adv. 2018;4(10):eaat6063.
  • Graf T, Felser C, Parkin SSP. Heusler compounds: applications in spintronics. In: Yongbing X, Awschalom DD, Nitta J, editors. Handbook of spintronics. Dordrecht: Springer Netherlands; 2016. p. 335–364.
  • Nishino Y, Kato H, Kato M, et al. Effect of off-stoichiometry on the transport properties of the Heusler-type Fe2VAl compound. Phys Rev B. 2001;63(23):233303.
  • Planes A, Mañosa L, Acet M. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J Phys Condens Matter. 2009;21(23):233201.
  • Heusler F. Magnetic-chemical studies. Verh Dtsch Phys Ges. 1903;5(12): 219.
  • Bradley AJ, Rodgers JW, Bragg WL. The crystal structure of the Heusler alloys. Proceedings of the Royal Society A (Proc. Roy. Soc. A). 1934;144(852):340–359.
  • Kojima T, Kameoka S, Tsai A-P. Heusler alloys: a group of novel catalysts. ACS Omega. 2017;2(1):147–153.
  • Kojima T, Kameoka S, Tsai A-P. Correction to “Heusler alloys: a group of novel catalysts”. ACS Omega. 2018;3(8):9738.
  • Hedvall JA, Ferromagnetische HR. Umwandlung und katalytische Aktivität. IV. Hydrierung von CO und C2H4 über Nickel und CO2-Bildung aus CO über der HEUSLER-Legierung MnAlCu2. Z Physik Chem. 1935;30B(1): 280–288.
  • Mueller U, Sundermann A, Trukhan N, et al., inventor; BASF, SE, assignee. Ternary intermetallic compound catalyst. United States patent US 2018/0243691 A1. 2018 Aug 30.
  • Senanayake NM Exploring Heusler alloys as catalysts for ammonia dissociation [master’s thesis]. Bowling Green (OH): Bowling Green State University; 2016.
  • Borodziński A, Bond GC. Selective hydrogenation of ethyne in ethene‐rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal Rev. 2006;48(2):91–144.
  • Borodziński A, Bond GC. Selective hydrogenation of ethyne in ethene‐rich streams on palladium catalysts, part 2: steady‐state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal Rev. 2008;50(3):379–469.
  • Samimi F, Modarresi ZK, Dehghani O, et al. Application of response surface methodology for optimization of an industrial methylacetylene and propadiene hydrogenation reactor. J Taiwan Inst Chem Eng. 2015;46:51–64.
  • Yoshida N Catalytic hydrogenation of methylacetylene over group VIII metals: Application of microwave spectroscopy to the analysis of isomeric deuteropropylenes [PhD thesis]. Osaka (Japan): Osaka University; 1971.
  • Studt F, Abild-Pedersen F, Bligaard T, et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science. 2008;320(5881):1320–1322.
  • Kojima T, Fujieda S, Kato G, et al. Hydrogenation of propyne verifying the harmony in surface and bulk Compositions for Fe-Ni alloy nanoparticles. Mater Trans. 2017;58(5):776–781.
  • Armbrüster M, Kovnir K, Friedrich M, et al. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat Mater. 2012;11:690–693.
  • Liu Y, Liu X, Feng Q, et al. Intermetallic NixMy (M = Ga and Sn) nanocrystals: a non-precious metal catalyst for semi-hydrogenation of alkynes. Adv Mater. 2016;28(23):4747–4754.
  • Tsai AP, Kameoka S, Nozawa K, et al. Intermetallic: a pseudoelement for catalysis. Acc Chem Res. 2017;50(12):2879–2885.
  • Roduner E. Understanding catalysis. Chem Soc Rev. 2014;43(24):8226–8239.
  • Krajčí M, Hafner J. Complex intermetallic compounds as selective hydrogenation catalysts – A case study for the (100) surface of Al13Co4. J Catal. 2011;278(2):200–207.
  • Krajčí M, Hafner J. Intermetallic compounds as selective heterogeneous catalysts: insights from DFT. ChemCatChem. 2016;8(1):34–48.
  • Oliynyk AO, Antono E, Sparks TD, et al. High-throughput machine-learning-driven synthesis of full-Heusler compounds. Chem Mater. 2016;28(20):7324–7331.
  • Takahashi K, Takahashi L, Miyazato I, et al. The rise of catalyst informatics: towards catalyst genomics. Chem Cat Chem. 2019;11(4):1146–1152.
  • Furukawa A, Ikeda T, Okaya T. Materials research method using smart materials informatics. Honda R&D Tech Rev. 2017;29(1):90–97.
  • Wang C, Meyer J, Teichert N, et al. Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys. J Vac Sci Technol B. 2014;32(2):020802.
  • Basit L, Wang C, Jenkins CA, et al. Heusler compounds as ternary intermetallic nanoparticles: Co2FeGa. J Phys D: Appl Phys. 2009;42(8):084018.
  • Wang C, Basit L, Khalavka Y, et al. Probing the size effect of Co2FeGa-SiO2@C nanocomposite particles prepared by a chemical approach. Chem Mater. 2010;22(24):6575–6582.
  • Wang CH, Guo YZ, Casper F, et al. Size correlated long and short range order of ternary Co2FeGa Heusler nanoparticles. Appl Phys Lett. 2010;97(10):103106.
  • Wang C, Casper F, Guo Y, et al. Resolving the phase structure of nonstoichiometric Co2FeGa Heusler nanoparticles. J Appl Phys. 2012;112(12):124314.
  • Gellesch M, Dimitrakopoulou M, Scholz M, et al. Facile nanotube-assisted synthesis of ternary intermetallic nanocrystals of the ferromagnetic Heusler phase Co2FeGa. Cryst Growth Des. 2013;13(7):2707–2710.
  • Pezeshki-Nejad Z, Ramazani A, Alikhanzadeh-Arani S, et al. Influence of the surfactant and annealing rate on the morphology, magnetic and structural characteristics of Co2FeAl nanoparticles. J Magn Magn Mater. 2016;412:243–249.
  • Alikhanzadeh-Arani S, Almasi-Kashi M, Ramazani A, et al. Size effects on the magnetic characteristics of a nanostructured Heusler alloy. J Mater Sci. 2016;51(3):1354–1362.
  • Wang C, Casper F, Gasi T, et al. Structural and magnetic properties of Fe2CoGa Heusler nanoparticles. J Phys D: Appl Phys. 2012;45(29):295001.
  • Li T, Duan J, Yang C, et al. microstructure and magnetic properties of Heusler Co2FeSn nanoparticles. Micro Nano Lett. 2013;8(3):143–146.
  • Aksoy S. Synthesis and characterization of NiMnIn nanoparticles. J Magn Magn Mater. 2015;373:236–239.