2,126
Views
6
CrossRef citations to date
0
Altmetric
Engineering and Structural Materials

Cryogenic study of the magnetic and thermal stability of retained austenite in nanostructured bainite

, , &
Pages 673-687 | Received 27 Mar 2019, Accepted 28 May 2019, Published online: 27 Jun 2019

References

  • Kwon O. What’s new in steel? Nat Mater. 2007;6:713.
  • Sumner A, Gerada C, Brown N, et al. Controlling DC permeability in cast steels. J Magn Magn Mater. 2017;429:79–85.
  • Kitanov S, Podol’skii A. Analysis of eddy-current and magnetic rail brakes for high-speed trains. Open Transp J. 2008;2:19–28.
  • Ma D-M, Shiau J-K. The design of eddy-current magnet brakes. Trans Can Soc Mech Eng. 2011;35(1):19–37.
  • Arumugam P, Xu Z, La Rocca A, et al. High-speed solid rotor permanent magnet machines: concept and design. IEEE Trans Transp Electrific. 2016;2(3):391–400.
  • Garcia-Mateo C, Sourmail T, Caballero FG, et al. Nanostructured steel industrialisation: plausible reality. Mater Sci Technol. 2014;30(9):1071–1078.
  • García Mateo C, Caballero FC. Ultra-high-strength bainitic steels. ISIJ Int. 2005;45(11):1736–1740.
  • Bhadeshia HKDH. Bainite in steels: theory and practice. 3rd ed. Wakefield (UK): Maney Publishing; 2015.
  • Garcia-Mateo C, Caballero FG. Nanocrystalline bainitic steels for industrial applications. In: Nanotechnology for energy sustainability. Weinheim: Wiley-VCH Verlag; 2017. p. 707–724.
  • Sourmail T, Garcia-Mateo C, Caballero FG, et al. Tensile ductility of nanostructured bainitic steels: influence of retained austenite stability. Metals. 2017;7(1):31.
  • Morales-Rivas L, Garcia-Mateo C, Kuntz M, et al. Induced martensitic transformation during tensile test in nanostructured bainitic steels. Mater Sci Eng A. 2016;662:169–177.
  • Rementeria R, Poplawsky JD, Aranda MM, et al. Carbon concentration measurements by atom probe tomography in the ferritic phase of high-silicon steels. Acta Mater. 2017;125:359–368.
  • Sourmail T, Smanio V, Ziegler C, et al. Novel nanostructured bainitic steel grades to answer the need for high-performance steel components (Nanbain). Luxembourg: European Comission; 2013.
  • Balzar D, Ledbetter H. Voigt-function modeling in fourier analysis of size- and strain-broadened X-ray diffraction peaks. J Appl Crystallogr. 1993;26(pt 1):97–103.
  • Dyson DJ, Holmes B. Effect of alloying additions on lattice parameter of austenite. J Iron Steel Inst. 1970;208:469–474.
  • Garcia-Mateo C, Jimenez JA, Lopez-Ezquerra B, et al. Analyzing the scale of the bainitic ferrite plates by XRD, SEM and TEM. Mater Charact. 2016;122:83–89.
  • Garcia-Mateo C, Caballero F, Bhadeshia H. Development of hard bainite. ISIJ Int. 2003;43(8):1238–1243.
  • Caballero FG, Yen H-W, Miller MK, et al. Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels. Acta Mater. 2011;59(15):6117–6123.
  • Singh SB, Bhadeshia HKDH. Estimation of bainite plate-thickness in low-alloy steels. Mater Sci Eng A. 1998;245(1):72–79.
  • Cornide J, Garcia-Mateo C, Capdevila C, et al. An assessment of the contributing factors to the nano-scale structural refinement of advanced bainitic steels. J Alloys Compd. 2013;577:S43–S47.
  • Bhadeshia HKDH. Bainite in steels. Transformations, microstructure and properties. 3rd ed. London: H. Bhadeshia; 2015.
  • Caballero FG, Garcia-Mateo C, Chao J, et al. Effects of morphology and stability of retained austenite on the ductility of TRIP-aided bainitic steels. ISIJ Int. 2008;48(9):1256–1262.
  • Garcia-Mateo C, Caballero FG, Miller MK, et al. On measurement of carbon content in retained austenite in a nanostructured bainitic steel. J Mater Sci. 2012;47(2):1004–1010.
  • Caballero FG, Garcia-Mateo C, Santofimia MJ, et al. New experimental evidence on the incomplete transformation phenomenon in steel. Acta Mater. 2009;57(1):8–17.
  • Rees Bhadeshia GI. Bainite transformation kinetics. Part 2. Non-uniform distribution of carbon. Mater Sci Technol. 1992;8:994–996.
  • Le Houillier R, Bégin G, Dubé A. A study of the peculiarities of austenite during the formation of bainite. Metall Trans A. 1971;2(9):2645–2653.
  • Babu SS, Specht ED, David SA, et al. In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite. Metall Mater Trans B. 2005;36A(12):3281–3289.
  • Stone HJ, Peet MJ, Bhadeshia HKDH, et al. Synchrotron X-ray studies of austenite and bainitic ferrite. Proc R Soc A. 2008;464(2092):1009–1027.
  • Rementeria R, Jimenez JA, Allain SYP, et al. Quantitative assessment of carbon allocation anomalies in low temperature bainite. Acta Mater. 2017;133:333–345.
  • Bhadeshia HKDH, Edmonds DV. Bainite in silicon steels: new composition-property approach. Part 1. Met Sci. 1983;17(9):411–419.
  • Bhadeshia HKDH, Edmonds DV. The bainite transformation in a silicon steel. Metall Trans A. 1979;10(7):895–896.
  • Chang LC, Bhadeshia HKDH. Metallographic observations of bainite transformation mechanism. Mater Sci Technol. 1995;11(2).
  • Caballero FG, Yen HW, Miller MK, et al. Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels. Acta Mater. 2011;59(15):6117–6123.
  • Williamson GK, Smallman RE III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos Mag. 1956;1(1):34–46.
  • Dini G, Ueji R, Najafizadeh A, et al. Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Mater Sci Eng A. 2010;527(10–11):2759–2763.
  • Smallman RE, Westmacott KH. Stacking faults in face-centred cubic metals and alloys. Philos Mag. 1957;2(17):669–683.
  • Morales-Rivas L, Yen H-W, Huang B-M, et al. Tensile response of two nanoscale bainite composite-like structures. JOM. 2015;67:2223–2235.
  • Ajus C, Tavares SSM, Silva MR, et al. Magnetic properties and retained austenite quantification in SAE 4340 steel. Revista Matéria. 2009;14(3):993–999.
  • Renzetti RA, Sandim HRZ, Sandim MJR, et al. Annealing effects on microstructure and coercive field of ferritic–martensitic ODS eurofer steel. Mater Sci Eng A. 2011;528(3):1442–1447.
  • Oliveira VB, Sandim MJR, Stamopoulos D, et al. Annealing effects on the microstructure and coercive field of two ferritic–martensitic eurofer steels: a comparative study. J Nucl Mater. 2013;435:189–195.
  • Jiles D. Introduction to magnetism and magnetic materials. New York: Taylor & Francis Group; 2010.
  • Grady DE. Origin of the linear term in the expression for the approach to saturation in ferromagnetic materials. Phys Rev B. 1971;4(11):3982–3989.
  • Zhao L, van Dijk NH, Brück E, et al. Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels. Mater Sci Eng A. 2001;313(1):145–152.
  • Sicupira FL, Sandim MJR, Sandim HRZ, et al. Quantification of retained austenite by X-ray diffraction and saturation magnetization in a supermartensitic stainless steel. Mater Charact. 2016;115:90–96.
  • Swartzendruber LJ. Properties, units and constants in magnetism. J Magn Magn Mater. 1991;100:573–575.
  • Tavares SSM, Mello SR, Gomes AM, et al. X-ray diffraction and magnetic characterization of the retained austenite in a chromium alloyed high carbon steel. J Mater Sci. 2006;41(15):4732–4736.
  • Tavares SSM, Pedrosa PDS, Teodósio JR, et al. Magnetic properties of the UNS S39205 duplex stainless steel. J Alloys Compd. 2003;351(1):283–288.
  • Tavares SSM, Pardal JM, Souza JAD, et al. Magnetic phase quantification of the UNSS32750 superduplex stainless steel. J Alloys Compd. 2006;416(1):179–182.
  • Pardal JM, Tavares SSM, Cindra Fonseca MP, et al. Influence of temperature and aging time on hardness and magnetic properties of the maraging steel grade 300. J Mater Sci. 2007;42(7):2276–2281.
  • Shen YF, Qiu LN, Sun X, et al. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels. Mater Sci Eng A. 2015;636:551–564.
  • Solano-Alvarez W, Abreu HFG, daSilva MR, et al. Phase quantification in nanobainite via magnetic measurements and X-raydiffraction. J Magn Magn Mater. 2015;378:200–205.
  • Bozorth RM. Ferromagnetism. New York: D. Van Nostrand Company, Inc.; 1961.
  • Schweer FC, Spangler CE, Kelly JFJ. Temperature dependence of the magnetic coercitivity of perlite. Acta Metall. 1978;26:579–589.
  • King HW, Larbalestier DC. Austenitic stainless steels at cryogenic temperatures: the compositional dependence of the Ms. Cryog. 1981;21(9):521–524.
  • Luzginova N, Zhao L, Sietsma J. Evolution and thermal stability of retained austenite in SAE 52100 bainitic steel. Mater Sci Eng A. 2007;448(1):104–110.
  • Koneshlou M, Meshinchi Asl K, Khomamizadeh F. Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel. Cryog. 2011;51:55–61.
  • Bhadeshia HKDH, Honeycombe RWK. Steels: microstructure and properties. London: Butterworths-Heinemann (Elsevier): 2006.
  • Jacques PJ, Girault E, Mertens A, et al. The developments of cold-rolled TRIP-assisted multiphase steels. Al-alloyed TRIP-assisted multiphase steels. ISIJ Int. 2001;41(9):1068–1074.
  • Nohara K, Ono Y, Ohashi N. Composition and grain size dependence of strain induced martensitic transformation in metastable austenitic stainless steels. Tetsu to hagane. J ISIJ. 1977;63(5):212–222.
  • Sourmail T, Garcia-Mateo C. Critical assessment of models for predicting the M-s temperature of steels. Comput Mater Sci. 2005;34(4):323–334.
  • Yang H-S, Bhadeshia HKDH. Austenite grain size and the martensite-start temperature. Scr Mater. 2009;60(7):493–495.
  • Sadeghpour S, Kermanpur A, Najafizadeh A. Investigation of the effect of grain size on the strain-induced martensitic transformation in a high-Mn stainless steel using nanoindentation. Mater Sci Eng A. 2014;612:214–216.
  • García-Junceda A, Capdevila C, Caballero FG, et al. Dependence of martensite start temperature on fine austenite grain size. Scr Mater. 2008;58(2):134–137.
  • Kitahara H, Tsuji N, Minamino Y. Martensite transformation from ultrafine grained austenite in Fe-28.5 at.% Ni. Mater Sci Eng A. 2006;438:233–236.
  • Brandt ML, Olson GB. Bainitic stabilization of austenite in low alloy sheet steels. Iron Steelmaker. 1993;20(5):55–60.
  • Miihkinen VTT, Edmonds DV. M icrostructural examination of two experimental high-strength bainitic low-alloy steels containing silicon. Mater Sci Technol. 1987;3(6):422–431.
  • Jacques PJ, Ladrière J, Delannay F. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall Mater Trans A. 2001;32(11):2759–2768.
  • Garcia-Mateo C, Jimenez JA, Yen HW, et al. Low temperature bainitic ferrite: evidence of carbon super-saturation and tetragonality. Acta Mater. 2015;91:162–173.
  • Grajcar A, Zalecki W, Skrzypczyk P, et al. Dilatometric study of phase transformations in advanced high-strength bainitic steel. J Therm Anal Calorim. 2014;118:739–748.
  • Marcus PM, Moruzzi VL, Qiu S-L. Tetragonal equilibrium states of iron. Phys Rev B. 1999;60:369–371.
  • Pinski FJ, Staunton J, Gyorffy BL, et al. Ferromagnetism versus antiferromagnetism in face-centered-cubic iron. Phys Rev Lett. 1986;56:2096–2099.
  • Boukhvalov DW, Gornostyrev YN, Katsnelson MI, et al. Magnetism and local distorsion near carbon impurity in γ-iron. Phys Rev Lett. 2007;99:247205.
  • Medvedeva NI, Van Aken D, Medvedeva JE. Magnetism in bcc and fcc Fe with carbon and manganese. J Phys Condens Matter. 2010;22:316002.
  • Okatov SV, Gornostyrev YN, Lichtenstein AI, et al. Magnetoelastic coupling in γ-iron investigated within an ab initio spin spiral approach. Phys Rew B. 2011;84(7):214422.
  • Warnes LAA, King HW. The low temperature magnetic properties of austentic Fe-Cr-Ni alloys 1. The effect of nickel concentration in Fe-Ni-20 wt% Cr alloys. Cryog. 1976;16(8):473–481.
  • Lu J, Walsh RP, Han K. Low temperature physical properties of a high Mn austenitic steel JK2LB. Cryog. 2009;49(3):133–137.
  • Klimenko IN. Anomaly of the yield stress and magnetic state in gamma Fe 18Cr Ni alloys. Acta Metall Mater. 1990;38(5):799–803.
  • Hauser JJ. Magnetic proximity effect. Phys Rev. 1969;187(2):580–583.
  • Unguris J, Celotta RJ, Pierce DT. Magnetism in Cr thin films on Fe(100). Phys Rev Lett. 1992;69(7):1125–1128.
  • Maccherozzi F, Sperl M, Panaccione G, et al. Evidence for a magnetic proximity effect up to room remperature at Fe/(Ga;Mn)As interfaces. Phys Rev Lett. 2008;101:267201.
  • Kravets AF, Timoshevskii AN, Yanchitsky BZ, et al. Temperature-controlled interlayer exchange coupling in strong/weak ferromagnetic multilayers: a thermomagnetic Curie switch. Phys Rev B. 2012;86:214413.
  • Zhang X, Hickel T, Rogal J, et al. Structural transformations among austenite, ferrite and cementite in Fe–C alloys: a unified theory based on ab initio simulations. Acta Mater. 2015;99:281–289.
  • Razumov IK, Boukhvalov DV, Petrik MV, et al. Role of magnetic degrees of freedom in a scenario of phase transformations in steel. Phys Rev B. 2014;90:094101.