2,479
Views
8
CrossRef citations to date
0
Altmetric
Bio-Inspired and Biomedical Materials

Biocompatible and Na+-sensitive thin-film transistor for biological fluid sensing

, , , &
Pages 917-926 | Received 06 Jun 2019, Accepted 14 Aug 2019, Published online: 23 Sep 2019

References

  • Ammann D, Pretsch E, Simon W. A sodium ion-selective electrode based on a neutral carrier. Anal Lett. 1974;7:23–32.
  • LeBlanc OH, Grubb WT. Long-lived potassium ion selective polymer membrane electrode. Anal Chem. 1976;48:1658–1660.
  • Oesch U, Caras S, Janata J. Field effect transistors sensitive to sodium and ammonium ions. Anal Chem. 1981;53:1983–1986.
  • Lindner E, Niegreisz Z, Toth K, et al. Electrical and dynamic properties of non-plasticized potassium selective membranes. J Electroanal Chem. 1989;259:67–80.
  • Battilotti M, Mercuri R, Mazzamurro G, et al. Lead ion-sensitive membrane for ISFETs. Sensors Actuators B: Chem. 1990;1:438–440.
  • Kimura K, Matsuba T, Tsujimura Y, et al. Unsymmetrical calix[4]arene ionophore/silicone rubber composite membranes for high-performance sodium ion-sensitive field-effect transistors. Anal Chem. 1992;64:2508–2511.
  • Tsujimura Y, Yokoyama M, Kimura K. Comparison between silicone-rubber membranes and plasticized poly(vinyl chloride) membranes containing calix[4]arene ionophores for sodium ion-sensitive field-effect transistors in applicability to sodium assay in human body fluids. Sensors Actuators B: Chem. 1994;22:195–199.
  • Brunink JAJ, Lugtenberg RJW, Brzøzka Z, et al. The design of durable Na+-selective CHEMFETs based on polysiloxane membranes. J Electroanal Chem. 1994;378:185–200.
  • Knoll M, Cammann K, Dumschat C, et al. Potentiometric silicon microsensor for nitrate and ammonium. Sensors Actuators B: Chem. 1994;18:51–55.
  • Högg G, Lutze O, Cammann K. Novel membrane material for ion-selective field-effect transistors with extended lifetime and improved selectivity. Anal Chim Acta. 1996;335:103–109.
  • Cazalé A, Sant W, Launay J, et al. Study of field effect transistors for the sodium ion detection using fluoropolysiloxane-based sensitive layers. Sensors Actuators B: Chem. 2013;177:515–521.
  • Arakaki X, Foster H, Su L, et al. Extracellular sodium modulates the excitability of cultured hippocampal pyramidal cells. Brain Res. 2011;1401:85–94.
  • Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature. 2016;529:509–514.
  • Bergveld P. Development, operation, and application of the tool for electrophysiology. IEEE Trans Biomed Eng. 1972;BME-19:342–351.
  • Esashi M, Matsuo T. Integrated micro-multi-ion sensor using field effect of semiconductor. IEEE Trans Biomed Eng. 1978;BME-25:184–192.
  • Sakata T, Miyahara Y. Potentiometric detection of single nucleotide polymorphism using genetic field effect transistor. ChemBioChem. 2005;6:703–710.
  • Sakata T, Miyahara Y. DNA sequencing based on intrinsic molecular charges. Angew Chem Int Ed. 2006;45:2225–2228.
  • Han Y, Offenhausser A, Ingebrandt S. Detection of DNA hybridization by a field-effect transistor with covalently attached catcher molecules. Surf Interface Anal. 2006;38:176−181.
  • Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475:348–352.
  • Sakata T, Ihara M, Makino I, et al. Open sandwich-based immuno-transistor for label-free and noncompetitive detection of low molecular weight antigen. Anal Chem. 2009;81:7532−7537.
  • Tung NT, Tue PT, Lien TTN, et al. Peptide aptamer-modified single-walled carbon nanotube-based transistors for high-performance biosensors. Sci Rep. 2017;7:17881.
  • Fromherz P, Offenhausser A, Vetter T, et al. A neuron-silicon junction: A retzius cell of the leech on an insulated-gate field-effect transistor. Science. 1991;252:1290−1293.
  • Sakata T, Saito A, Mizuno J, et al. Single embryo-coupled gate field effect transistor for elective single embryo Transfer. Anal Chem. 2013;85:6633–6638.
  • Satake H, Saito A, Sakata T. Elucidation of interfacial pH behaviour at cell/substrate nanogap for in situ monitoring of cellular respiration. Nanoscale. 2018;10:10130–10136.
  • Uematsu Y, Kajisa T, Sakata T. Fundamental characteristics of glucose transistor with chemically functional interface. ChemElectroChem. 2017;4:2225–2231.
  • Nishitani S, Sakata T. Potentiometric adsorption isotherm analysis of a molecularly imprinted polymer interface for small-biomolecule recognition. ACS Omega. 2018;3:5382–5389.
  • Nishitani S, Sakata T. Polymeric nanofilter biointerface for potentiometric small-biomolecule recognition. ACS Appl Mater Interfaces. 2019;11:5561−5569.
  • Sekitani T, Zschieschang U, Klauk H, et al. Flexible organic transistors and circuits with extreme bending stability. Nat Mater. 2010;9:1015–1022.
  • Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic s. Nature. 2013;499:458–463.
  • Izak T, Sakata T, Miyazawa Y, et al. Diamond-coated field-effect sensor for DNA recognition — Influence of material and morphology. Diam Relat Mater. 2015;60:87–93.
  • Minamiki T, Minami T, Sasaki Y, et al. An organic field-effect transistor with an extended-gate electrode capable of detecting human immunoglobulin A. Anal Sci. 2015;31:725–728.
  • Sakata T, Nishimura K, Miyazawa Y, et al. Ion sensitive transparent-gate transistor for visible cell sensing. Anal Chem. 2017;89:3901–3908.
  • Ohno Y, Maehashi K, Yamashiro Y, et al. Electrolyte-gated graphene field-effect transistors for detecting ph and protein adsorption. Nano Lett. 2009;9:3318–3322.
  • Sarkar D, Liu W, Xie XJ, et al. MoS2 field-effect transistor for nextgeneration label-free biosensors. ACS Nano. 2014;8:3992–4003.
  • Manoharan AK, Chinnathambi S, Jayavel R, et al. Simplified detection of the hybridized DNA using a graphene field effect transistor. Sci Technol Adv Mater. 2017;18:43–50.
  • Matsuo T, Esashi M. Field effect transistor type chemical sensor and its application. OYO Buturi. 1980;49:586–593.
  • Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature. 2004;432:488–492.
  • Kim YC, Lee SJ, Oh IK, et al. Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide–metal–oxide electrodes. J Alloys Compd. 2016;688:1108–1114.
  • Liu Y, Tong LH, Huang S, et al. Complexation thermodynamics of bis(crown ether)s. 4. Calorimetric titration of intramolecular sandwich complexation of thallium and sodium ions with bis(15-crown-5)s and bis(12-crown-4)s: enthalpy-entropy compensation. J Phys Chem. 1990;94:2666–2670.
  • Buck RP, Lindner E. Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure Appl Chem. 1994;66:2527–2536.
  • Yokoyama Y, Aragaki M, Sato H, et al. Determination of sweat constituents by liquid ionization mass spectrometry. Anal Chim Acta. 1991;246:405–411.
  • Taylor RP, Polliack AA, Bader DL. The analysis of metabolites in human sweat: analytical methods and potential application to investigation of pressure ischaemia of soft tissues. Ann Clin Biochem. 1994;31:18–24.
  • Dabek-Zlotorzynska E, Dlouhy JF. Application of capillary electrophoresis in atmospheric aerosol analysis: determination of cations. J Chromatogr A. 1995;706:527–534.