2,213
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Anodic bonding of mid-infrared transparent germanate glasses for high pressure - high temperature microfluidic applications

ORCID Icon, , ORCID Icon, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 11-24 | Received 10 Sep 2019, Accepted 07 Dec 2019, Published online: 13 Jan 2020

References

  • Hartman RL, Jensen KF. Microchemical systems for continuous-flow synthesis. Lab Chip. 2009;9(17):2495–2507.
  • Jensen KF, Reizman BJ, Newman SG. Tools for chemical synthesis in microsystems. Lab Chip. 2014;14(17):3206–3212.
  • Duncombe TA, Tentori AM, Herr AE. Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Biol. 2015;16(9):554–567.
  • El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature. 2006;442(7101):403–411.
  • Marre S, Jensen KF. Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev. 2010;39(3):1183–1202.
  • Keybl J, Jensen KF. Microreactor system for high-pressure continuous flow homogeneous catalysis measurements. Ind Eng Chem Res. 2011;50(19):11013–11022.
  • Baek J, Allen PM, Bawendi MG, et al. Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow microreactor. Angew Chem-Int Ed. 2011;50(3):627–630.
  • Marre S, Park J, Rempel J, et al. Supercritical continuous-microflow synthesis of narrow size distribution quantum dots. Adv Mater. 2008;20(24):4830.
  • Pinho B, Girardon S, Bazer-Bachi F, et al. A microfluidic approach for investigating multicomponent system thermodynamics at high pressures and temperatures. Lab Chip. 2014;14(19):3843–3849.
  • Gunda NSK, Bera B, Karadimitriou NK, et al. Reservoir-on-a-Chip (ROC): A new paradigm in reservoir engineering. Lab Chip. 2011;11(22):3785–3792.
  • Song W, de Haas TW, Fadaei H, et al. Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels. Lab Chip. 2014;14(22):4382–4390.
  • Morais S, Liu N, Diouf A, et al. Monitoring CO2 invasion processes at the pore scale using geological labs on chip. Lab Chip. 2016;16(18):3493–3502.
  • Pattekar AV, Kothare MV. Novel microfluidic interconnectors for high temperature and pressure applications. J Micromech Microeng. 2003;13(2):337–345.
  • Murphy ER, Inoue T, Sahoo HR, et al. Solder-based chip-to-tube and chip-to-chip packaging for microfluidic devices. Lab Chip. 2007;7(10):1309–1314.
  • Jiang B, Santis-Alvarez AJ, Muralt P, et al. Design and packaging of a highly integrated microreactor system for high-temperature on-board hydrogen production. Chem Eng J. 2015;275:206–219.
  • Tiggelaar RM, Benito-Lopez F, Hermes DC, et al. Fabrication, mechanical testing and application of high-pressure glass microreactor chips. Chem Eng J. 2007;131(1–3):163–170.
  • Marre S, Adamo A, Basak S, et al. Design and packaging of microreactors for high pressure and high temperature applications. Ind Eng Chem Res. 2010;49(22):11310–11320.
  • Jensen KF. Silicon-based microchemical systems: characteristics and applications. MRS Bull. 2006;31(2):101–107.
  • Das S, Srivastava VC. Microfluidic-based photocatalytic microreactor for environmental application: a review of fabrication substrates and techniques, and operating parameters. Photochem Photobiol Sci. 2016;15(6):714–730.
  • Liu N, Aymonier C, Lecoutre C, et al. Microfluidic approach for studying CO2 solubility in water and brine using confocal Raman spectroscopy. Chem Phys Lett. 2012;551:139–143.
  • Dochow S, Becker M, Spittel R, et al. Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles. Lab Chip. 2013;13(6):1109–1113.
  • Yue J, Falke FH, Schouten JC, et al. Microreactors with integrated UV/Vis spectroscopic detection for online process analysis under segmented flow. Lab Chip. 2013;13(24):4855–4863.
  • Wagner C, Buchegger W, Vellekoop M, et al. Time-resolved mid-IR spectroscopy of (bio)chemical reactions in solution utilizing a new generation of continuous-flow micro-mixers. Anal Bioanal Chem. 2011;400(8):2487–2497.
  • Kise DP, Magana D, Reddish MJ, et al. Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection. Lab Chip. 2014;14(3):584–591.
  • Chan KLA, Niu XZ, de Mello AJ, et al. Rapid prototyping of microfluidic devices for integrating with FT-IR spectroscopic imaging. Lab Chip. 2010;10(16):2170–2174.
  • Pan T, Kelly RT, Asplund MC, et al. Fabrication of calcium fluoride capillary electrophoresis microdevices for on-chip infrared detection. J Chromatogr A. 2004;1027(1–2):231–235.
  • Starecki F, Morais S, Chahal R, et al. IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems. Int J Greenhouse Gas Control. 2016;55:36–41.
  • Pele AL, Braud A, Doualan JL, et al. Dy3+ doped GeGaSbS fluorescent fiber at 4.4 mu m for optical gas sensing: comparison of simulation and experiment. Opt Mater. 2016;61:37–44.
  • Perro A, Lebourdon G, Henry S, et al. Combining microfluidics and FT-IR spectroscopy: towards spatially resolved information on chemical processes. React Chem Eng. 2016;1(6):577–594.
  • Jiang X, Lousteau J, Richards B, et al. Investigation on germanium oxide-based glasses for infrared optical fibre development. Opt Mater. 2009;31(11):1701–1706.
  • Kohli JT, Shelby JE. Rare-earth aluminogermanate glasses. J Am Ceram Soc. 1991;74(5):1031–1035.
  • Cao GX, Lin FY, Hu HF, et al. A new fluorogermanate glass. J Non-Crystalline Solids. 2003;326:170–176.
  • Wang MC, Wang JS, Hon MH. Effect of Na2O addition on the properties and structure of germanate glass. Ceram Int. 1995;21(2):113–118.
  • Shelby JE. Thermal-expansion of mixed-alkali germanate glasses. J Appl Phys. 1975;46(1):193–196.
  • Knowles KM, van Helvoort ATJ. Anodic bonding. Int Mater Rev. 2006;51(5):273–311.
  • Fabbri M, Senna JR. Models of ionic transport for silicon-glass anodic bonding. J Electrochem Soc. 2008;155(12):G274–G282.
  • Murthy MK, Scroggie B. Properties and structure of glasses in system M2O-Al2O3-GeO2 (M=Li, Na, K). Phys Chem Glasses. 1965;6(5):162.
  • Fan JT, Tang B, Wu D, et al. Dependence of fluorescence properties on substitution of BaF2 for BaO in barium gallo-germanate glass. J Non-Crystalline Solids. 2011;357(3):1106–1109.
  • Jewell JM. Alkaline-earth gallogermanate glasses. Rare Elements Glasses. 1994;94-9:317–343.
  • Szu SP, Shu CP, Hwa LG. Structure of properties of lanthanum galliogermanate glasses. J Non-Crystalline Solids. 1998;240(1–3):22–28.
  • Jewell JM, Higby PL, Aggarwal ID. Properties of BaO–R2O3– ga2O3–geO2 (R = Y, Al, La, and Gd) Glasses. J Am Ceram Soc. 1994;77(3):697–700.
  • Mezeix P, Celarie F, Houizot P, et al. Elasticity and viscosity of BaO-TiO2-SiO2 glasses in the 0.9 to 1.2T(g) temperature interval. J Non-Crystalline Solids. 2016;445:45–52.
  • Sellappan P, Rouxel T, Celarie F, et al. Composition dependence of indentation deformation and indentation cracking in glass. Acta Materialia. 2013;61(16):5949–5965.
  • Idriss M, Celarie F, Yokoyama Y, et al. Evolution of the elastic modulus of Zr-Cu-Al BMGs during annealing treatment and crystallization: role of Zr/Cu ratio. J Non-Crystalline Solids. 2015;421:35–40.
  • Lee TMH, Lee DHY, Liaw CYN, et al. Detailed characterization of anodic bonding process between glass and thin-film coated silicon substrates. Sensors Actuators a-Phys. 2000;86(1–2):103–107.
  • Hwa LG, Chang YR, Chao WC. Infrared spectra of lanthanum gallogermanate glasses. Mater Chem Phys. 2004;85(1):158–162.
  • Verweij H, Buster J. Structure of lithium, sodium and potassium germanate glasses, studied by Raman scattering. J Non-Crystalline Solids. 1979;34(1):81–99.
  • Sharma SK, Matson DW. Raman-spectra and structure of sodium aluminogermanate glasses. J Non-Crystalline Solids. 1984;69(1):81–96.
  • Angell CA. Mobile ions in amorphous solids. Annu Rev Phys Chem. 1992;43:693–717.
  • Pradel A, Ribes M. Ionic conductive glasses. Mater Sci Eng B Solid State Mater Adv Technol. 1989;3(1–2):45–56.
  • Vermeer J. The electric strengths of glasses with different sodium contents. Physica. 1956;22(12):1247–1253.
  • Ravaine D, Souquet JL. Thermodynamic approach to ionic-conductivity in glasses. 1. Correlation of ionic-conductivity with chemical potential of alkali oxide in oxide glasses. Phys Chem Glasses. 1977;18(2):27–31.
  • Cozma A, Puers B. Characterization of the electrostatic bonding of silicon and pyrex glass. J Micromech Microeng. 1995 Jun;5(2):98–102.
  • Isard JO. The mixed alkali effect in glass. J Non-Crystalline Solids. 1969;1(3):235–261.
  • Demarchi G, Mazzoldi P, Miotello A. Analysis of ionic-conductivity in alkali and mixed-alkali aluminosilicate glasses. J Non-Crystalline Solids. 1988;105(3):307–312.
  • Ehrt D, Keding R. Electrical conductivity and viscosity of borosilicate glasses and melts. Phys Chem Glasses-Eur J Glass Sci Technol Part B. 2009;50(3):165–171.
  • Hanada T, Soga N, Kunugi M. Physical properties of germanate glasses in Na2O-GeO2 and Na2S-GeO2 systems. I. Elastic and thermal properties. J Ceram AssocJpn. 1973;81(939):481–485.
  • Zainudin CN, Hisam R, Yusof MIM, et al. Effect of increasing concentration of Na2O on structural, elastic and optical properties of (90-x) GeO2-xNa(2)O-10PbO glass system in the germanate anomaly region. Mater Res Express. 2017;4:10.
  • Spinner S. Elastic moduli of glasses at elevated temperatures by a dynamic method. J Am Ceram Soc. 1956;39(3):113–118.
  • Trachsel F, Hutter C, von Rohr PR. Transparent silicon/glass microreactor for high-pressure and high-temperature reactions. Chem Eng J. 2008;135:S309–S316.
  • He J, Yang F, Wang W, et al. Electric current characteristic of anodic bonding. J Micromech Microeng. 2015;25:6.