2,169
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Novel Mg-ion conductive oxide of μ-cordierite Mg0.6Al1.2Si1.8O6

, , &
Pages 131-138 | Received 20 Nov 2019, Accepted 12 Feb 2020, Published online: 03 Mar 2020

References

  • Van Noorden R. The rechargeable revolution: A better battery. Nature. 2014;507(7490):26–28.
  • Muldoon J, Bucur CB, Oliver AG, et al. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci. 2012;5:5941–5950.
  • Srour H, Chancelier L, Bolimowska E, et al. Ionic liquid-based electrolytes for lithium-ion batteries: review of performances of various electrode systems. J Appl Electrochem. 2016;46(2):149–155.
  • Novák P, Imhof R, Haas O. Magnesium insertion electrodes for rechargeable nonaqueous batteries— a competitive alternative to lithium? Electrochim Acta. 1999;45(1–2):351–367.
  • Canepa P, Bo S-H, Gautam GS, et al. High magnesium mobility in ternary spinel chalcogenides. Nat Commun. 2017;8:1759.
  • Nakano K, Noda Y, Tanibata N, et al. Computational investigation of the Mg-ion conductivity and phase stability of MgZr4 (PO4)6. RSC Adv. 2019;9:12590–12595.
  • Higashi S, Miwa K, Aoki M, et al. A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem Commun. 2014;50:1320–1322.
  • Tamura S, Yamane M, Hoshino Y, et al. Highly conducting divalent Mg2+ cation solid electrolytes with well-ordered three-dimensional network structure. J Solid State Chem. 2016;235:7–11.
  • Imanaka N, Okazaki Y, Adachi G. Optimization of divalent magnesium ion conduction in phosphate based polycrystalline solid electrolytes. Ionics. 2001;7(4–6):440–446.
  • Nomura K, Ikeda S, Ito K, et al. Framework structure, phase transition, and transport properties in M II Zr 4 (PO 4) 6 compounds (M II = Mg, Ca, Sr, Ba, Mn, Co, Ni, Zn, Cd, and Pb). Bull Chem Soc Jpn. 1992;65(12):3221–3227.
  • Imanaka N, Okazaki Y, Adachi G. Divalent magnesium ionic conduction in Mg 1-2x(Zr 1-xNb x) 4P 6O 24 (x = 0-0.4) solid solutions. Electrochem Solid-State Lett. 2000;3(7):327–329.
  • Ikeda S, Takahashi M, Ishikawa J, et al. Solid electrolytes with multivalent cation conduction. 1. Conducting species in MgZrPO4 system. Solid State Ion. 1987;23(1–2):125–129.
  • Imanaka N, Okazaki Y, Adachi GY. Divalent magnesium ion conducting characteristics in phosphate based solid electrolyte composites. J Mater Chem. 2000;10:1431–1435.
  • Kajihara K, Nagano H, Tsujita T, et al. High-temperature conductivity measurements of magnesium-ion-conducting solid oxide Mg0.5-x(Zr1-xNbx)2(PO4)3 (x = 0.15) using Mg metal electrodes. J Electrochem Soc. 2017;164(9):A2183–A2185.
  • Omote A, Yotsuhashi S, Zenitani Y, et al. High ion conductivity in MgHf(WO4)3 solids with ordered structure: 1-D alignments of Mg2+ and Hf4+ ions. J Am Ceram Soc. 2011;94(8):2285–2288.
  • Anuar NK, Adnan SBRS, Mohamed NS. Characterization of Mg0.5 Zr2(PO4)3 for potential use as electrolyte in solid state magnesium batteries. Ceram Int. 2014;40(8): 13719–1372.
  • Takahashi H, Takamura H. Preparation and ionic conductivity of Al-doped Mg0.5 Ti2 (PO4)3. Mater Trans. 2012;53(5):932–935.
  • Rong Z, Malik R, Canepa P, et al. Materials design rules for multivalent ion mobility in intercalation structures. Chem Mater. 2015;27:6016–6021.
  • Hosono H, Hayashi K, Kamiya T, et al. New functionalities in abundant element oxides: ubiquitous element strategy. Sci Technol Adv Mater. 2011;12:034303.
  • Hans Wedepohl K. The composition of the continental crust Geochim. Cosmochim Acta. 1995;59:1217–1232.
  • Muramatsu H, Hayashi A, Ohtomo T, et al. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion. 2011;182:116–119.
  • Nakayama M, Kimura M, Jalem R, et al. Efficient automatic screening for Li ion conductive inorganic oxides with bond valence pathway models and percolation algorithm. Jpn J Appl Phys. 2016;55(1S):01AH05.
  • Tanibata N, Kondo Y, Yamada S, et al. Nanotube-structured Na2V3O7 as a cathode material for sodium-ion batteries with high-rate and stable cycle performances. Sci Rep. 2018;8:17199.
  • ICSD. [ cited 2019 Oct 23]. Available from: https://icsd.fiz-karlsruhe.de/index.xhtml;jsessionid=79DFDEC6992BDEBD008E0187605997D6
  • Schilz H, Hoffmann W, Muchow GM. The average structure of Mg[Al2Si3O10], a stuffed derivative of the high-quartz structure. Z Kristallogr Cryst Mater. 1971;134(8):1–27.
  • Adams S, Rao RP. High power lithium ion battery materials by computational design. Phys Status Solidi Appl Mater Sci. 2011;208(8):1746–1753.
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47(1):558–561.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B - Condens Matter Mater Phys. 1996;54(16):11169–11186.
  • Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium. Phys Rev B. 1994;49(20):14251–14269.
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15–50.
  • Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B - Condens Matter Mater Phys. 1999;59(3):1758–1775.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953–17979.
  • Perdew JP, Ruszsinszky A, Csonka GI, et al. Generalized gradient approximation for solids and their surfaces. Phys Rev Lett. 2007;100:136406.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–519.
  • Tkalcec E, Popovic J, Grzeta B et al. Crystallization studies of cordierite originated from sol-gel precursors. Proceedings of the 10th International Conference of the European Ceramic Society; 2007. p. 275–279.
  • Kikuchi N, Sei T, Tsuchiya T, et al. Preparation of cordierite ceramics by the sol-gel process and their properties. J Ceram Soc Jpn. 1993;101(1175):802–807.
  • Yuan Q, Zhang PX, Gao L, et al. MgO-Al2O3-SiO2 glass-ceramic prepared by sol-gel method. Adv Mat Res. 2010;92:131–137.
  • Petrović R, Janaćković D, Zec S, et al. Crystallization behavior of alkoxy-derived cordierite gels. J Sol-Gel Sci Technol. 2003;28(1):111–118.
  • Shi ZM, Liang KM, Zhang Q, et al. Effect of cerium addition on phase transformation and microstructure of cordierite ceramics prepared by sol-gel method. J Mater Sci. 2001;36(21):5227–5230.
  • Jalem R, Yamamoto Y, Shiiba H, et al. Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem Mater. 2013;25(3):425–430.
  • Wang Y, Richards WD, Ong SP, et al. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015;14:1026–1031.
  • Chen T, Sai Gautam G, Canepa P. Ionic transport in potential coating materials for Mg batteries. Chem Mater. 2019;31:8087–8099.
  • He X, Zhu Y, Mo Y. Origin of fast ion diffusion in super-ionic conductors. Nat Commun. 2017;8:15893.