4,716
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Versatile surface for solid–solid/liquid–solid triboelectric nanogenerator based on fluorocarbon liquid infused surfaces

, , , , &
Pages 139-146 | Received 24 Oct 2019, Accepted 20 Feb 2020, Published online: 05 Mar 2020

References

  • Chai Z, Zhang N, Sun P, et al. Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano. 2016;10(10):9201–9207.
  • Li C, Liu Y, Huang X, et al. Direct sun‐driven artificial heliotropism for solar energy harvesting based on a photo‐thermomechanical liquid‐crystal elastomer nanocomposite. Adv Funct Mater. 2012;22(24):5166–5174.
  • Smith JG, Faucheaux JA, Jain PK. Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today. 2015;10(1):67–80.
  • Abraham TJ, MacFarlane DR, Pringle JM. High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting. Energy Environ Sci. 2013;6(9):2639–2645.
  • Han T, Zhao J, Yuan T, et al. Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials. Energy Environ Sci. 2013;6(12):3537–3541.
  • Karker N, Dharmalingam G, Carpenter MA. Thermal energy harvesting plasmonic based chemical sensors. ACS Nano. 2014;8(10):10953–10962.
  • Brogioli D, Zhao R, Biesheuvel P. A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes. Energy Environ Sci. 2011;4(3):772–777.
  • Kim J, Kim SJ, Kim D-K. Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores. Energy. 2013;51:413–421.
  • Kim T, Logan BE, Gorski CA. High power densities created from salinity differences by combining electrode and Donnan potentials in a concentration flow cell. Energy Environ Sci. 2017;10(4):1003–1012.
  • Han SA, Kim TH, Kim SK, et al. Point‐defect‐passivated MoS2 nanosheet‐based high performance piezoelectric nanogenerator. Adv Mater. 2018;30(21):1800342.
  • Hinchet R, Lee S, Ardila G, et al. Performance optimization of vertical nanowire‐based piezoelectric nanogenerators. Adv Funct Mater. 2014;24(7):971–977.
  • Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006;312(5771):242–246.
  • Dai H, Abdelkefi A, Javed U, et al. Modeling and performance of electromagnetic energy harvesting from galloping oscillations. Smart Mater Struct. 2015;24(4):045012.
  • Saha C, O’donnell T, Wang N, et al. Electromagnetic generator for harvesting energy from human motion. Sens Actuators A. 2008;147(1):248–253.
  • Wang H, He C, Lv S, et al. A new electromagnetic vibrational energy harvesting device for swaying cables. Appl Energy. 2018;228:2448–2461.
  • Heo D, Kim T, Yong H, et al. Sustainable oscillating triboelectric nanogenerator as omnidirectional self-powered impact sensor. Nano Energy. 2018;50:1–8.
  • Niu S, Liu Y, Wang S, et al. Theory of sliding‐mode triboelectric nanogenerators. Adv Mater. 2013;25(43):6184–6193.
  • Niu S, Liu Y, Wang S, et al. Theoretical investigation and structural optimization of single‐electrode triboelectric nanogenerators. Adv Funct Mater. 2014;24(22):3332–3340.
  • Zi Y, Niu S, Wang J, et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat Commun. 2015;6:8376.
  • Chung J, Heo D, Shin G, et al. Ion‐enhanced field emission triboelectric nanogenerator. Advan Energy Mater. 2019;9(37):1901731.
  • Chung J, Yong H, Moon H, et al. Capacitor‐integrated triboelectric nanogenerator based on metal–metal contact for current amplification. Adv Energy Mater. 2018;8(15):1703024.
  • He X, Guo H, Yue X, et al. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale. 2015;7(5):1896–1903.
  • Wang S, Xie Y, Niu S, et al. Maximum surface charge density for triboelectric nanogenerators achieved by ionized‐air injection: methodology and theoretical understanding. Adv Mater. 2014;26(39):6720–6728.
  • Kim T, Kim DY, Yun J, et al. Direct-current triboelectric nanogenerator via water electrification and phase control. Nano Energy. 2018;52:95–104.
  • Li X, Tao J, Wang X, et al. Networks of high performance triboelectric nanogenerators based on liquid–solid interface contact electrification for harvesting low‐frequency blue energy. Adv Energy Mater. 2018;8(21):1800705.
  • Lin ZH, Cheng G, Lin L, et al. Water–solid surface contact electrification and its use for harvesting liquid‐wave energy. Angew Chem. 2013;52(48):12545–12549.
  • Tang W, Jiang T, Fan FR, et al. Liquid‐metal electrode for high‐performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv Funct Mater. 2015;25(24):3718–3725.
  • Chung J, Heo D, Kim B, et al. Superhydrophobic water-solid contact triboelectric generator by simple spray-on fabrication method. Micromachines. 2018;9(11):593.
  • Hou H, Xu Q, Pang Y, et al. Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all‐solid‐state sodium‐ion battery. Adv Sci. 2017;4(8):1700072.
  • Lee KY, Chun J, Lee JH, et al. Hydrophobic sponge structure‐based triboelectric nanogenerator. Adv Mater. 2014;26(29):5037–5042.
  • Lin Z-H, Cheng G, Wu W, et al. Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano. 2014;8(6):6440–6448.
  • Wong T-S, Kang SH, Tang SK, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature. 2011;477(7365):443.
  • Biswas S, Vijayan K. Friction and wear of PTFE—a review. Wear. 1992;158(1–2):193–211.
  • Pooley CM, Tabor D. Friction and molecular structure: the behaviour of some thermoplastics. Proc R Soc Lond A Math Phys Sci. 1972;329(1578):251–274.
  • Chen SW, Cao X, Wang N, et al. An ultrathin flexible single‐electrode triboelectric‐nanogenerator for mechanical energy harvesting and instantaneous force sensing. Adv Energy Mater. 2017;7(1):1601255.
  • Yang Y, Zhou YS, Zhang H, et al. A single‐electrode based triboelectric nanogenerator as self‐powered tracking system. Adv Mater. 2013;25(45):6594–6601.
  • Cho H, Chung J, Shin G, et al. Toward sustainable output generation of liquid–solid contact triboelectric nanogenerators: the role of hierarchical structures. Nano Energy. 2019 Feb;56:56–64.
  • Lin ZH, Cheng G, Lee S, et al. Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process. Adv Mater. 2014;26(27):4690–4696.
  • Dharmasena RDIG, Jayawardena K, Mills C, et al. Triboelectric nanogenerators: providing a fundamental framework. Energy Environ Sci. 2017;10(8):1801–1811.
  • Zhu G, Zhou YS, Bai P, et al. A shape‐adaptive thin‐film‐based approach for 50% high‐efficiency energy generation through micro‐grating sliding electrification. Adv Mater. 2014;26(23):3788–3796.