2,421
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Resistive switching memory performance in oxide hetero-nanocrystals with well-controlled interfaces

, , , ORCID Icon, , & show all
Pages 195-204 | Received 31 Oct 2019, Accepted 28 Feb 2020, Published online: 19 Mar 2020

References

  • Han JS, Le. QV, Choi J, et al. Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching toward environment-friendly and temperature-tolerant nonvolatile memories. ACS Appl Mater Interfaces. 2019;11(8):8155–8163.
  • Yang JJ, Strukov DB, Stewart DR. Memristive devices for computing. Nat Nanotech. 2013;8(1):13–23.
  • Shi Y, Liang X, Yuan B, et al. Electronic synapse made of layered two-dimensional materials. Nat Electron. 2018;1:458–465.
  • Han UB, Lee JS. Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory. Sci Rep. 2016;6(1):25537.
  • Wang LG, Cao ZY, Qian X, et al. Atomic layer deposited oxide-based nanocomposite structures with embedded CoPtx nanocrystals for resistive random access memory applications. ACS Appl Mater Interfaces. 2017;9(7):6634–6643.
  • Yang Y, Huang R. Probing memristive switching in nanoionics devices. Nat Electron. 2018;1:274–287.
  • Nagashima K, Yanagida T, Oka K, et al. Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. Nano Lett. 2010;10(4):1359–1363.
  • Nagashima K, Yanagida T, Oka K, et al. Prominent thermodynamical interaction with surrounding on nanoscale memristive switching of metal oxides. Nano Lett. 2012;12(11):5684–5690.
  • Hua Q, Wu H, Gao B, et al. A threshold switching selector based on highly ordered Ag nanodots for X-point memory applications. Adv Sci. 2019;6:1900024.
  • Yoon JH, Han JH, Jung JS, et al. Highly improved uniformity in the resistive switching parameters of TiO2 thin films by inserting Ru nanodots. Adv Mater. 2013;25(14):1957–1992.
  • Lee M-J, Lee CB, Lee D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric <sub>Ta2O5−x/TaO2−x bilayer structures. Nat Mater. 2011;10(8):625–630.
  • Kwon D-H, Kim KM, Jang JH, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol. 2010;5(2):148–153.
  • Song SJ, Seok JY, Yoon JH, et al. Real-time identification of the evolution of conducting nano-filaments in TiO2 thin film ReRAM. Sci Rep. 2013;3(1):3443.
  • Waser R, Aono M. Nanoionics-based resistive switching memories. Nat Mater. 2007;6(11):833–840.
  • Sawa A. Resistive switching in transition metal oxides. Mater Today. 2008;11(6):28–36.
  • Yu S, Guan X, Philip Wong H-S. Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model. Appl Phys Lett. 2011;99(6):063507.
  • Ishibe T, Matsui H, Watanabe K, et al. Epitaxial iron oxide nanocrystals with memory function grown on Si substrates. Appl Phys Express. 2016;9(5):055508.
  • Ishibe T, Kurokawa T, Naruse N, et al. Resistive switching at the high quality metal/insulator interface in Fe3O4/SiO2/α-FeSi2/Si stacking structure. Appl Phys Lett. 2018;113(14):141601.
  • Odagawa A, Katoh Y, Kanzawa Y, et al. Electroforming and resistance-switching mechanism in a magnetite thin film. Appl Phys Lett. 2007;91(13):133503.
  • Muraoka S, Osano K, Kanazawa Y. et al. Fast switching and long retention Fe-O ReRAM and its switching mechanism. Tech Dig IEDM. 2007; 779–782.
  • Nakamura Y, Murayama A, Watanabe R, et al. Self-organized formation and self-repair of a twodimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates. Nanotechnology. 2010;21(9):095305.
  • Nakamura Y, Watanabe K, Fukuzawa Y, et al. Observation of the quantum-confinement effect in individual Ge nanocrystals on oxidized Si substrates using scanning tunneling spectroscopy. Appl Phys Lett. 2005;87(13):133119.
  • Nakamura Y, Isogawa M, Ueda T, et al. Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material. Nano Energy. 2015;12:845–851.
  • Yamasaka S, Nakamura Y, Ueda T, et al. Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials. Sci Rep. 2015;5(1):14490.
  • Nakamura Y. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity. Sci Technol Adv Mater. 2018;19(1):31–43.
  • Matsui H, Ishibe T, Terada T, et al. Resistive switching characteristics of isolated core-shell iron oxide/germanium nanocrystals epitaxially grown on Si substrates. Appl Phys Lett. 2018;112(3):031601.
  • Stanka B, Hebenstreit W, Diebold U, et al. Surface reconstruction of Fe3O4(001). Surf Sci. 2000;448(1):49–63.
  • Huang Z, Chen Q, Zhai Y, et al. Oxygen vacancy induced magnetization switching in Fe3O4 epitaxial ultrathin films on GaAs(100). Appl Phys Lett. 2015;106(18):182401.
  • Ishibe T, Watanabe K, Nakamura Y. Effect of Fe coating of nucleation sites on epitaxial growth of Fe oxide nanocrystals on Si substrates. Jpn J Appl Phys. 2016;55(8S1):08NB12.
  • Ruby C, Humbert B, Fusy J. Surface and interface properties of epitaxial iron oxide thin films deposited on MgO(001) studied by XPS and Raman spectroscopy. Surf Interface Anal. 2000;29:377–380.
  • Schmeisser D, Schnell RD, Bogen A, et al. Surface oxidation states of germanium. Surf Sci. 1986;172(2):455–465.
  • Venugopal R, Sundaravel B, Wilson IH, et al. Structural and magnetic properties of Fe-Ge layer produced by Fe ion-implantation into germanium. J Appl Phys. 2002;91(3):1410–1416.
  • Prakash A, Maikap S, Rahaman SZ, et al. Resistive switching memory characteristics of G/GeOx nanowires and evidence of oxygen ion migration. Nanoscale Res Lett. 2008;8:220.