4,777
Views
23
CrossRef citations to date
0
Altmetric
Focus Issue Article

Recent progress in self-healable ion gels

ORCID Icon &
Pages 388-401 | Received 02 May 2020, Accepted 01 Jun 2020, Published online: 24 Jun 2020

References

  • Wishart JF. Energy applications of ionic liquids. Energy Environ. Sci.. 2009;2(9):956.
  • Fujimoto T, Awaga K. Electric-double-layer field-effect transistors with ionic liquids. Chem. Phys.. 2013;15(23):8983–9006.
  • Fedorov MV, Kornyshev AA. Ionic liquids at electrified interfaces. Chem. Rev.. 2014;114(5):2978–3036.
  • MacFarlane DR, Forsyth M, Howlett PC, et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat Rev Mater. 2016;1:15005.
  • Watanabe M, Thomas ML, Zhang S, et al. Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev. 2017;117(10):7190–7239.
  • Bisri SZ, Shimizu S, Nakano M, et al. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv Mater. 2017;29(25):1607054.
  • Ueki T, Watanabe M. Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules. 2008;41(11):3739–3749.
  • Le Bideau J, Viau L, Vioux A. Ionogels, ionic liquid based hybrid materials. Chem Soc Rev. 2011;40(2):907–925.
  • Lodge TP, Ueki T. Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids. Acc Chem Res. 2016;49(10):2107–2114.
  • Chen N, Zhang H, Li L, et al. Ionogel electrolytes for high-performance lithium batteries: a review. Adv Energy Mater. 2018;8(12):1702675.
  • Marr PC, Marr AC. Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem. 2016;18(1):105–128.
  • Noda A, Watanabe M. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta. 2000;45(8–9):1265–1270.
  • Susan MABH, Kaneko T, Noda A, et al. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc. 2005;127(13):4976–4983.
  • Ueki T, Watanabe M. Upper critical solution temperature behavior of poly(N-isopropylacrylamide) in an ionic liquid and preparation of thermo-sensitive nonvolatile gels. Chem Lett. 2006;35(8):964–965.
  • Ueki T, Watanabe M. Lower critical solution temperature behavior of linear polymers in ionic liquids and the corresponding volume phase transition of polymer gels. Langmuir. 2007;23(3):988–990.
  • Lee H-N, Lodge TP. Lower Critical Solution Temperature (LCST) phase behavior of poly(ethylene oxide) in ionic liquids. J Phys Chem Lett. 2010;1(13):1962–1966.
  • Ueki T. Stimuli-responsive polymers in ionic liquids. Polym J. 2014;46(10):646–655.
  • Tamate R, Hashimoto K, Ueki T, et al. Block copolymer self-assembly in ionic liquids. Phys Chem Chem Phys. 2018;20(39):25123–25139.
  • Lodge TP. A unique platform for materials design. Science. 2008;321(5885):50–51.
  • He Y, Boswell PG, Bühlmann P, et al. Ion gels by self-assembly of a triblock copolymer in an ionic liquid. J Phys Chem B. 2007;111(18):4645–4652.
  • Zhang S, Lee KH, Frisbie CD, et al. Ionic conductivity, capacitance, and viscoelastic properties of block copolymer-based ion gels. Macromolecules. 2011;44(4):940–949.
  • Tang B, White SP, Frisbie CD, et al. Synergistic increase in ionic conductivity and modulus of triblock copolymer ion gels. Macromolecules. 2015;48(14):4942–4950.
  • Cho JH, Lee J, Xia Y, et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater. 2008;7(11):900–906.
  • Ha M, Zhang W, Braga D, et al. Aerosol-jet-printed, 1 volt h-bridge drive circuit on plastic with integrated electrochromic pixel. ACS Appl Mater Interfaces. 2013;5(24):13198–13206.
  • Moon HC, Lodge TP, Frisbie CD. Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic. J Am Chem Soc. 2014;136(9):3705–3712.
  • Moon HC, Lodge TP, Frisbie CD. Solution processable, electrochromic ion gels for sub-1 v, flexible displays on plastic. Chem Mater. 2015;27(4):1420–1425.
  • He Y, Lodge TP. A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid. Chem Commun. 2007;26:2732–2734.
  • Kitazawa Y, Ueki T, Niitsuma K, et al. Thermoreversible high-temperature gelation of an ionic liquid with poly(benzyl methacrylate-b-methyl methacrylate-b-benzyl methacrylate) triblock copolymer. Soft Matter. 2012;8(31):8067–8074.
  • Hall CC, Zhou C, Danielsen SPO, et al. Formation of multicompartment ion gels by stepwise self-assembly of a thermoresponsive ABC triblock terpolymer in an ionic liquid. Macromolecules. 2016;49(6):2298–2306.
  • Néouze M-A, Le Bideau J, Gaveau P, et al. Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chem Mater. 2006;18(17):3931–3936.
  • Ueno K, Watanabe M. From colloidal stability in ionic liquids to advanced soft materials using unique media. Langmuir. 2011;27(15):9105–9115.
  • Ueno K, Hata K, Katakabe T, et al. Nanocomposite ion gels based on silica nanoparticles and an ionic liquid: ionic transport, viscoelastic properties, and microstructure. J Phys Chem B. 2008;112(30):9013–9019.
  • Fukushima T, Kosaka A, Ishimura Y, et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science. 2003;300(5628):2072–2074.
  • Sekitani T, Noguchi Y, Hata K, et al. A rubberlike stretchable active matrix using elastic conductors. Science. 2008;321(5895):1468–1472.
  • Lee J, Aida T. “Bucky gels” for tailoring electroactive materials and devices: the composites of carbon materials with ionic liquids. Chem Commun. 2011;47(24):6757–6762.
  • Nathan A, Ahnood A, Cole MT, et al. Flexible electronics: the next ubiquitous platform. Proc IEEE. 2012;100:1486–1517.
  • Stoppa M, Chiolerio A. Wearable electronics and smart textiles: a critical review. Sensors. 2014;14(7):11957–11992.
  • Wang B, Facchetti A. Mechanically Flexible Conductors for Stretchable and Wearable E‐Skin and E‐Textile Devices. Adv Mater. 2019;31(28):1901408.
  • Calvert P. Hydrogels for Soft Machines. Adv Mater. 2009;21(7):743–756.
  • Toohey KS, Sottos NR, Lewis JA, et al. Self-healing materials with microvascular networks. Nat Mater. 2007;6(8):581–585.
  • Wool RP. Self-healing materials: a review. Soft Matter. 2008;4(3):400–418.
  • Yang Y, Urban MW. Self-healing polymeric materials. Chem Soc Rev. 2013;42(17):7446–7467.
  • Yang Y, Ding X, Urban MW. Chemical and physical aspects of self-healing materials. Prog Polym Sci. 2015;49:34–59.
  • Kang J, Tok JBH, Bao Z. Self-healing soft electronics. Nat Electron. 2019;2(4):144–150.
  • Deng Z, Wang H, Ma PX, et al. Self-healing conductive hydrogels: preparation, properties and applications. Nanoscale. 2020;12(3):1224–1246.
  • Chen D, Wang D, Yang Y, et al. Self-healing materials for next-generation energy harvesting and storage devices. Adv Energy Mater. 2017;7(23):1700890.
  • Chung C-M, Roh Y-S, Cho S-Y, et al. Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem Mater. 2004;16:3982–3984.
  • Habault D, Zhang H, Zhao Y. Light-triggered self-healing and shape-memory polymers. Chem Soc Rev. 2013;42(17):7244–7256.
  • Fiore GL, Rowan SJ, Weder C. Optically healable polymers. Chem Soc Rev. 2013;42(17):7278–7288.
  • Burnworth M, Tang L, Kumpfer JR, et al. Optically healable supramolecular polymers. Nature. 2011;472(7343):334–337.
  • Amamoto Y, Kamada J, Otsuka H, et al. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew Chem Int Ed. 2011;50(7):1660–1663.
  • Amamoto Y, Otsuka H, Takahara A, et al. Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv Mater. 2012;24(29):3975–3980.
  • Kaur G, Johnston P, Saito K. Photo-reversible dimerisation reactions and their applications in polymeric systems. Polym Chem. 2014;5(7):2171–2186.
  • Kumar GS, Neckers DC. Photochemistry of azobenzene-containing polymers. Chem Rev. 1989;89(8):1915–1925.
  • El Halabieh RH, Mermut O, Barrett CJ. Using light to control physical properties of polymers and surfaces with azobenzene chromophores. Pure Appl Chem. 2004;76(7–8):1445–1465.
  • Yager KG, Barrett CJ. Novel photo-switching using azobenzene functional materials. J Photochem Photobiol Chem. 2006;182(3):250–261.
  • Seki T. A wide array of photoinduced motions in molecular and macromolecular assemblies at interfaces. Bull Chem Soc Jpn. 2018;91(7):1026–1057.
  • Ueki T, Nakamura Y, Usui R, et al. Photoreversible gelation of a triblock copolymer in an ionic liquid. Angew Chem Int Ed. 2015;54(10):3018–3022.
  • Ueki T, Usui R, Kitazawa Y, et al. Thermally reversible ion gels with photohealing properties based on triblock copolymer self-assembly. Macromolecules. 2015;48(16):5928–5933.
  • Ma X, Usui R, Kitazawa Y, et al. Photo-healable ion gel with improved mechanical properties using a tetra-arm diblock copolymer containing azobenzene groups. Polymer. 2015;78:42–50.
  • Ueki T, Nakamura Y, Yamaguchi A, et al. UCST phase transition of azobenzene-containing random copolymer in an ionic liquid. Macromolecules. 2011;44(17):6908–6914.
  • Ma X, Usui R, Kitazawa Y, et al. Physicochemical characterization of a photoinduced sol–gel transition of an azobenzene-containing ABA triblock copolymer/ionic liquid system. Macromolecules. 2017;50(17):6788–6795.
  • Tamate R, Usui R, Hashimoto K, et al. Photo/thermoresponsive ABC triblock copolymer-based ion gels: photoinduced structural transitions. Soft Matter. 2018;14(45):9088–9095.
  • Wang C, Hashimoto K, Tamate R, et al. Controlled sol-gel transitions of a thermoresponsive polymer in a photoswitchable azobenzene ionic liquid as a molecular trigger. Angew Chem Int Ed. 2018;57(1):227–230.
  • Wang C, Hashimoto K, Tamate R, et al. Viscoelastic change of block copolymer ion gels in a photo-switchable azobenzene ionic liquid triggered by light. Chem Commun. 2019;55(12):1710–1713.
  • Xu J-F, Chen Y-Z, Wu L-Z, et al. Dynamic covalent bond based on reversible photo [4 + 4] cycloaddition of anthracene for construction of double-dynamic polymers. Org Lett. 2013;15(24):6148–6151.
  • Zheng Y, Micic M, Mello SV, et al. PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules. 2002;35(13):5228–5234.
  • Trenor SR, Shultz AR, Love BJ, et al. Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chem Rev. 2004;104(6):3059–3078.
  • Saruwatari A, Tamate R, Kokubo H, et al. Photohealable ion gels based on the reversible dimerisation of anthracene. Chem Commun. 2018;54(95):13371–13374.
  • Kamio E, Yasui T, Iida Y, et al. Inorganic/organic double-network gels containing ionic liquids. Adv Mater. 2017;29(47):1704118.
  • Yasui T, Kamio E, Matsuyama H. Inorganic/organic double-network ion gels with partially developed silica-particle network. Langmuir. 2018;34(36):10622–10633.
  • Yasui T, Fujinami S, Hoshino T, et al. Energy dissipation: via the internal fracture of the silica particle network in inorganic/organic double network ion gels. Soft Matter. 2020;16(9):2363–2370.
  • Gong JP, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15(14):1155–1158.
  • Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6(12):2583–2590.
  • Tang Z, Lyu X, Xiao A, et al. High-performance double-network ion gels with fast thermal healing capability via dynamic covalent bonds. Chem Mater. 2018;30(21):7752–7759.
  • Maeda T, Otsuka H, Takahara A. Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Prog Polym Sci. 2009;34(7):581–604.
  • García F, Smulders MMJ. Dynamic covalent polymers. J Polym Sci Part A Polym Chem. 2016;54(22):3551–3577.
  • Zou W, Dong J, Luo Y, et al. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv Mater. 2017;29(14):1606100.
  • Chakma P, Konkolewicz D. Dynamic covalent bonds in polymeric materials. Angew Chem Int Ed. 2019;58(29):9682–9695.
  • Cordier P, Tournilhac F, Soulié-Ziakovic C, et al. Self-healing and thermoreversible rubber from supramolecular assembly. Nature. 2008;451(7181):977–980.
  • Herbst F, Döhler D, Michael P, et al. Self-healing polymers via supramolecular forces. Macromol Rapid Commun. 2013;34(3):203–220.
  • Campanella A, Döhler D, Binder WH. Self-healing in supramolecular polymers. Macromol Rapid Commun. 2018;39(17):1700739.
  • Harada A, Takashima Y, Nakahata M. Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc Chem Res. 2014;47(7):2128–2140.
  • de Espinosa LM, Fiore GL, Weder C, et al. Healable supramolecular polymer solids. Prog Polym Sci. 2015;49–50:60–78.
  • Li C, Zuo J. Self‐healing polymers based on coordination bonds. Adv Mater. 2019;1903762.
  • Sharma M, Mondal D, Mukesh C, et al. Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid. Carbohydr Polym. 2013;98(1):1025–1030.
  • Trivedi TJ, Bhattacharjya D, Yu J-S, et al. Functionalized agarose self-healing ionogels suitable for supercapacitors. ChemSusChem. 2015;8(19):3294–3303.
  • Zhao X, Guo S, Li H, et al. One-pot synthesis of self-healable and recyclable ionogels based on polyamidoamine (PAMAM) dendrimers: via Schiff base reaction. RSC Adv. 2017;7(61):38765–38772.
  • Chen S, Zhang B, Zhang N, et al. Development of self-healing d -gluconic acetal-based supramolecular ionogels for potential use as smart quasisolid electrochemical materials. ACS Appl Mater Interfaces. 2018;10(6):5871–5879.
  • Li Z, Wang J, Hu R, et al. A highly ionic conductive, healable, and adhesive polysiloxane‐supported ionogel. Macromol Rapid Commun. 2019;40(7):1800776.
  • Tamate R, Hashimoto K, Horii T, et al. Self-healing micellar ion gels based on multiple hydrogen bonding. Adv Mater. 2018;30(36):1802792.
  • Tamate R, Hashimoto K, Li X, et al. Effect of ionic liquid structure on viscoelastic behavior of hydrogen-bonded micellar ion gels. Polymer. 2019;178:121694.
  • Cao Y, Morrissey TG, Acome E, et al. A transparent, self-healing, highly stretchable ionic conductor. Adv Mater. 2017;29(10):1605099.
  • Fuller J, Breda AC, Carlin RT. Ionic liquid–polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids. J Electroanal Chem. 1998;459(1):29–34.
  • Yeon S-H, Kim K-S, Choi S, et al. Characterization of PVdF(HFP) gel electrolytes based on 1-(2-Hydroxyethyl)-3-methyl imidazolium ionic liquids. J Phys Chem B. 2005;109(38):17928–17935.
  • Cao Y, Tan YJ, Li S. et al. Self-healing electronic skins for aquatic environments. Nat Electron. 2019;2(2):75–82.
  • Ko J, Surendran A, Febriansyah B, et al. Self-healable electrochromic ion gels for low power and robust displays. Org Electron. 2019;71:199–205.
  • Zhang LM, He Y, Cheng S, et al. Self-healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation. Small. 2019;15(21):1804651.
  • Guo P, Su A, Wei Y, et al. Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(21):19413–19420.
  • D’Angelo AJ, Panzer MJ. Design of stretchable and self-healing gel electrolytes via fully zwitterionic polymer networks in solvate ionic liquids for Li-based batteries. Chem Mater. 2019;31(8):2913–2922.
  • Angell CA, Ansari Y, Zhao Z. Ionic liquids: past, present and future. Faraday Discuss. 2012;154:9–27.
  • Yoshida K, Nakamura M, Kazue Y, et al. Oxidative-stability enhancement and charge transport mechanism in glyme–lithium salt equimolar complexes. J Am Chem Soc. 2011;133(33):13121–13129.
  • Mandai T, Yoshida K, Ueno K, et al. Criteria for solvate ionic liquids. Phys Chem Chem Phys. 2014;16(19):8761–8772.
  • Ueno K, Yoshida K, Tsuchiya M, et al. Glyme–lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? J Phys Chem B. 2012;116(36):11323–11331.
  • Dokko K, Tachikawa N, Yamauchi K, et al. Solvate ionic liquid electrolyte for Li–S batteries. J Electrochem Soc. 2013;160(8):A1304–A1310.
  • Watanabe M, Dokko K, Ueno K, et al. From ionic liquids to solvate ionic liquids: challenges and opportunities for next generation battery electrolytes. Bull Chem Soc Jpn. 2018;91(11):1660–1682.
  • Thomas ML, Oda Y, Tatara R, et al. Suppression of water absorption by molecular design of ionic liquid electrolyte for Li-air battery. Adv Energy Mater. 2017;7(3):1601753.
  • Creton C. 50th anniversary perspective: networks and gels: soft but dynamic and tough. Macromolecules. 2017;50(21):8297–8316.