3,480
Views
21
CrossRef citations to date
0
Altmetric
Focus on Self-Healing Materials

Self-healing by design: universal kinetic model of strength recovery in self-healing ceramics

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 593-608 | Received 02 Jun 2020, Accepted 14 Jul 2020, Published online: 17 Aug 2020

References

  • Osada T, Kamoda K, Mitome M, et al. A novel design approach for self-crack-healing structural ceramics with 3D networks of healing activator. Sci Rep. 2017;7:17853.
  • Osada T, Nakao W, Takahashi K, et al. Self-crack-healing behavior in ceramic matrix composites, Advances in ceramic matrix composites. Cambridge, UK: Woodhead Publishing; 2014. p. 410–441.
  • Nakao W, Maruoka D, Ozaki S, et al. Mechanical properties and performance of engineering ceramics and composites IX. In: Singh D, Salem J, editors. Hoboken, NJ: John Wiley & Sons, Inc.; 2014. p. 187–193.
  • Padture NP. Advanced structural ceramics in aerospace propulsion. Nat Mater. 2016;15:804–809.
  • Evans AG. Perspective on the development of high-toughness ceramics. J Am Ceram Soc. 1990;73:187–206.
  • Wegst UGK, Bai H, Saiz E, et al. Bioinspired structural materials. Nat Mater. 2015;14:23–36.
  • Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater. 2014;13:508–514.
  • Hu CF, Sakka Y, Grasso S, et al. Shell-like nanolayered Nib4AlC3 ceramics with high strength and toughness. Scr Mater. 2011;64:765–768.
  • van der Zwaag S, Dijk NH, Jonkers HM, et al. Self-healing behavior in man-made engineering materials: bioinspired but taking into account their intrinsic character. Phil Trans R Soc A. 2009;367:1689–1704.
  • Hager MD, Greil P, Leyens C, et al. Self-healing materials. Adv Mater. 2010;22:5424–5430.
  • White SR, Sottos NR, Geubelle PH, et al. Autonomic healing of polymer composites. Nature. 2001;409:794–797.
  • Toohey KS, Sottos NR, Lewis JA, et al. self-healing materials with microvascular networks. Nat Mater. 2007;6:581–585.
  • Jonkers HM, Thijssen A, Muyzer G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng. 2010;36:230–235.
  • Chu MC, Sato S, Kobayashi Y, et al. Damage healing and strengthening behaviour in intelligent mullite/SiC ceramics. Fatigue Fract Eng Mater Struct. 1995;18:1019–1029.
  • Ando K, Chu MC, Tsuji K, et al. Crack healing behavior and high-temperature strength of mullite/SiC composite ceramics. J Eur Ceram Soc. 2002;22:1313–1319.
  • Ando K, Kim BS, Chu MC, et al. Crack-healing and mechanical behavior of Al2O3/SiC composites at elevated temperature. Fatigue Fract Eng Mater Struct. 2004;27:533–541.
  • Nakao W, Ono M, Takahashi K, et al. Critical crack-healing condition for SiC whisker reinforced alumina under stress. J Eur Ceram Soc. 2005;25:3649–3655.
  • Nakao W, Takahashi K, Ando K. Threshold stress during crack-healing treatment of structural ceramics having the crack-healing the ability. Mater Lett. 2007;61:2711–2713.
  • Osada T, Nakao W, Takahashi K, et al. Kinetics of self-crack-healing of alumina/silicon carbide composite including oxygen partial pressure effect. J Am Ceram Soc. 2009;92:864–869.
  • Osada T, Nakao W, Takahashi K, et al. Strength recovery behavior of machined Al2O3/SiC nano-composite ceramics by crack-healing. J Eur Ceram Soc. 2007;27:3261–3267.
  • Sugiyama R, Yamane K, Nakao W, et al. Effect of difference in crack-healing ability on fatigue behavior of alumina/silicon carbide composites. J Intell Material Syst Struct. 2008;19:411–415.
  • Ando K, Furasawa K, Chu MC, et al. Crack-healing behavior under stress of mullite/silicon carbide ceramics and the resultant fatigue strength. J Am Ceram Soc. 2001;84:2073–2078.
  • Nakao W, Abe S. Enhancement of the self-healing ability in oxidation induced self-healing ceramic by modifying the healing agent. Smart Mater Struct. 2012;21:025002.
  • Farle A, Boatemaa L, Shen L, et al. Demonstrating the self-healing behavior of some selected ceramics under combustion chamber condition. Smart Mater Struct. 2016;25:084019.
  • Yoshioka S, Boatemaa L, van der Zwaag S, et al. On the use of TiC as high-temperature healing particles in alumina based composites. J Eur Ceram Soc. 2016;36:4155–4511.
  • Yoshioka S, Nakao W. Methodology for evaluating self-healing agent of structural ceramics. J Intell Material Syst Struct. 2014;26:1395–1403.
  • Derelioglu Z, Carabat AL, Song GM, et al. On the use of B-alloyed MoSi2 particles as crack healing agents in yttria stabilized zirconia thermal barrier coatings. J Eur Ceram Soc. 2015;35:4507–4511.
  • Bei GP, Pedimonte BJ, Pezoldt M, et al. Crack healing in Ti2Al0.5Sn0.5C–Al2O3 composites. J Am Ceram Soc. 2015;98:1604–1610.
  • Sloof WG, Pei R, McDonald SA, et al. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy. Sci Rep. 2016;6:1–9.
  • Li S, Xiao L, Song G, et al. Oxidation and Crack healing behavior of a fine-grained Cr2AlC ceramic. J Am Ceram Soc. 2013;96:892–899.
  • Farle A, Kwakernaak C, van der Zwaag S, et al. A conceptual study into the potential of Mn+1AXn-phase ceramics for self-healing of crack damage. J Eur Ceram Soc. 2015;35:37–45.
  • Stumpf M, Fey T, Kakimoto K, et al. Nb2AlC-particle induced accelerated crack healing in ZrO2–matrix composites. Ceram Int. 2018;44:19352–19361.
  • Biatemaa L, van der Zwaag S, Sloof WG. Self-healing of Al2O3 containing Ti microparticles. Ceram Int. 2018;44:11116–11126.
  • Maruoka D, Nanko M. Recovery of mechanical strength by surface crack disappearance via thermal oxidation for nano-Ni/Al2O3 hybrid materials. Ceram Int. 2013;39:3221–3229.
  • Yoshida H, Kano S, Hasegawa Y, et al. Particle impact phenomena of silicon nitride ceramics. Phil Mag A. 1996;74:1287–1297.
  • Koizumi Y, Kobayashi T, Yokokawa T, et al. Superalloys 2004. PA: TMS; 2004. p. 35–43. (Eds: K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra, S. Walston).
  • Gu YF, Cui C, Harada H, et al. Superalloys 2008. PA: TMS; 2008. p. 53–61. (Eds: R. C. Reed, K. A. Green, P. Caron T. P. Gabb, M. G. Fahrmann, E. S. Huron, S. A. Woodard).
  • Reed R. The superalloys: fundamentals and applications. Cambridge, UK: Cambridge University Press; 2006.
  • Harada H, Ohno K, Yamagata T, et al. Superalloys 1988. PA: TMS; 1988. p. 733–742. (Eds:S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich and C. Lund).
  • Xiong W, Olson GB. Cybermaterials: materials by design and accelerated insertion of materials. NPJ Compu Mats. 2016;2:15009.
  • Galindo-Nava EI, Connor LD, Rae CMF. On the prediction of the yield stress of unimodal and multimodal γ’ Nickel-base superalloys. Acta Mater. 2015;98:377–390.
  • Whitmore L, Ahmadi MR, Stockinger M, et al. Microstructural investigation of thermally aged nickel-based superalloy 718Plus. Mater Sci Eng A. 2014;594:253–259.
  • Osada T, Gu YF, Nagashima N, et al. Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure. Acta Mater. 2013;61:1820–1829.
  • Goto T, Homma H. High-temperature active/passive oxidation and bubble formation of CVD SiC in O2 and CO2 atmospheres. J Eur Ceram Soc. 2002;22:2749–2756.
  • Goto T, Homma H, Hirai T. Effect of oxygen partial pressure on the high-temperature oxidation of CVD SiC. Corros Sci. 2002;44:359–370.
  • Castello JA, Tressler RE. Oxidation kinetics of hot-pressed and sintered α-SiC. J Am Ceram Soc. 1981;64:327–331.
  • Lv Z, Chen H. Modeling of self-healing efficiency for cracks due to unhydrated cement nuclei in hardened cement paste. Procedia Eng. 2012;27:281–290.
  • Ponnusami SA, Turteltaub S, van der Zwaag S. Cohesive-zone modelling of crack nucleation and propagation in particulate composites. Eng Fract Mech. 2015;149:170–190.
  • Osada T, Kinetics model for self-crack-healing in ceramics and possibility of turbine blade applications. Proceedings of the 4th International Conference on Self-Healing Materials; Ghent, Belgium; 2013, p. 573–576.
  • Fukuda M, Harada H, Yokokawa T, et al. Virtual jet engine system. Mater Sci Forum. 2010;638-642:2239–2244.
  • Drabi MK, Abu Al-Rub RK, Little DN. A continuum damage mechanics framework for modeling micro-damage healing. Int J Solids Struct. 2012;49:492–513.
  • Ozaki S, Aoki Y, Osada T, et al. Finite element analysis of fracture statistics of ceramics: effects of grain size and pore size distributions. J Am Ceram Soc. 2018;101:3191–3204.
  • Ozaki S, Osada T, Nakao W. Finite element analysis of the damage and healing behavior of self-healing ceramic materials. Int J Solids Struct. 2016;100:307–318.
  • Nakamura M, Takeo K, Osada T, et al. Finite element analysis of self-healing and damage processes in alumina/SiC composite ceramics. Technologies. 2017;5:40–50.
  • Bazant ZP, Kazemi MT. Size effect in fracture ceramics and its use to determine fracture energy and effective process zone length. J Am Ceram Soc. 1990;73:1841–1853.
  • Ando K, Shirai Y, Nakatani M, et al. (Crack-healing + proof test): a new methodology to guarantee the structural integrity of a ceramics component. J Eur Ceram Soc. 2002;22:121–128.
  • Tada H, Paris PC, Irwin GR. The stress analysis of cracks Handbook. USA: ASME; 1973.
  • Newman JC Jr., Raju IS. An empirical stress-intensity factor equation for surface crack. Eng Fract Mech. 1981;15:185–192.
  • Murakami Y. Stress intensity factor handbook, committee on fracture mechanics. Japan: The Society of Materials Science; 2001.
  • Takeuchi M, Kato T, Washiya T, et al. Corrosion resistance of ceramic materials in pyrochemical electrowinning conditions. JNC Technical Review. 2004;23:31–40. (In Japanese).
  • Lawn BR, Evans AG, Marshall DB. Elastic/plastic indentation damage in ceramics: the medial/radial crack system. J Am Ceram Soc. 1980;63:574–581.
  • Marshall DB, Lawn BR. Residual stress effects in sharp contact cracking, part1 indentation fracture mechanics. J Mater Sci. 1979;14:2001–2012.
  • Schneider GA, Fett T. Corrosion resistance of ceramic materials in pyrochemical electrowinning conditions. J Ceram Soc Jpn. 2006;114:1044–1048.
  • Fitt T, Rizzi G. Weight function and stress intensity factors for ring-shaped cracks, KIT-Report. FZKA. 2007;7265:1–40.