3,402
Views
15
CrossRef citations to date
0
Altmetric
Organic and soft materials

Thermally enhanced polyolefin composites: fundamentals, progress, challenges, and prospects

ORCID Icon, ORCID Icon & ORCID Icon
Pages 737-766 | Received 11 Jun 2020, Accepted 03 Sep 2020, Published online: 02 Nov 2020

References

  • Chen X, Su Y, Reay D, et al. Recent research developments in polymer heat exchangers – A review. Renew Sust Energ Rev. 2016;60:1367–1386.
  • Deisenroth DC, Arie MA, Dessiatoun S, et al. Review of most recent progress on development of polymer heat exchangers for thermal management applications. Proceedings of the International Electronic Packaging Technical Conference and Exhibition, San Francisco, CA. Vol. 56901, p. V003T03A003.
  • Vadivelu MA, Kumar CR, Joshi GM. Polymer composites for thermal management: a review. Compos Interfaces. 2016;23:847–872.
  • Lu X, Xu G. Thermally conductive polymer composites for electronic packaging. J Appl Polym Sci. 1997;65:2733–2738.
  • Morak M, Marx P, Gschwandl M, et al. Heat dissipation in epoxy/amine-based gradient composites with alumina particles: a critical evaluation of thermal conductivity measurements. Polymers. 2018;10:1131.
  • Ebadi-Dehaghani H, Nazempour M. Thermal Conductivity of Nanoparticles Filled Polymers, Smart Nanoparticles Technology. Rijeka: IntechOpen; 2012. p. 519-540
  • Lee B, Liu J, Sun B, et al. Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell. Express Polym Lett. 2008;2:357–363.
  • Zhai S, Zhang P, Xian Y, et al. Effective thermal conductivity of polymer composites: theoretical models and simulation models. Int J Heat Mass Transfer. 2018;117:358–374.
  • Ling Z, Zhang Z, Shi G, et al. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renew Sust Energ Rev. 2014;31:427–438.
  • Huang C, Qian X, Yang R. Thermal conductivity of polymers and polymer nanocomposites. Mater Sci Eng R Rep. 2018;132:1–22.
  • Ngo I-L, Jeon S, Byon C. Thermal conductivity of transparent and flexible polymers containing fillers: A literature review. Int J Heat Mass Transfer. 2016;98:219–226.
  • Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog Polym Sci. 2011;36:914–944.
  • Chen H, Ginzburg VV, Yang J, et al. Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci. 2016;59:41–85.
  • Jubinville D, Esmizadeh E, Saikrishnan S, et al. A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications. Sustainable Mater Technol. 2020;25:e00188.
  • Polyolefins Market Share, Size, Trends, Industry Analysis Report By Feedstock (Polyethylene, Polypropylene, Ethylene Vinyl Acetate, Thermoplastic Olefins, Others), By Application (Film & Sheet, Injection Molding, Blow Molding, Extrusion Coating, Fiber, Others), By Regions, Segments & Forecast, 2019-2026. 2019. p. 120.
  • Choi D, White J. Polyolefins: processing, structure development, and properties. Munich: Hanser Gardner Publications; 2005.
  • Chaudhry A, Mittal V, Hashmi M. A quick review for rheological properties of polyolefin composites. Sindh Uni Res J SURJ (Science Series). 2012;44:75-84.
  • Hussain ARJ, Alahyari AA, Eastman SA, et al. Review of polymers for heat exchanger applications: factors concerning thermal conductivity. Appl Therm Eng. 2017;113:1118–1127.
  • Tripathi SN, Rao GSS, Mathur AB, et al. Polyolefin/graphene nanocomposites: a review. RSC Adv. 2017;7:23615–23632.
  • Mittal V, Chaudhry AU. Effect of amphiphilic compatibilizers on the filler dispersion and properties of polyethylene—thermally reduced graphene nanocomposites. J Appl Polym Sci. 2015;132. DOI:https://doi.org/10.1002/app.42484
  • Spiridon II. Natural fiber-polyolefin composites. Mini-review. Cellul Chem Technol. 2014;48:599–611.
  • Chaudhry AU, Mabrouk A, Abdala A. Thermally enhanced pristine polyolefins: fundamentals, progress and prospective. J Mater Res Technol. 2020;9:10796–10806.
  • Shen S, Henry A, Tong J, et al. Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol. 2010;5:251–255.
  • Zhi C, Bando Y, Terao T, et al. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv Funct Mater. 2009;19:1857–1862.
  • Saeidijavash M, Garg J, Grady B, et al. High thermal conductivity through simultaneously aligned polyethylene lamellae and graphene nanoplatelets. Nanoscale. 2017;9:12867–12873.
  • Yang X, Liang C, Ma T, et al. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater. 2018;1:207–230.
  • Mehra N, Mu L, Ji T, et al. Thermal transport in polymeric materials and across composite interfaces. Appl Mater Today. 2018;12:92–130.
  • Palacios A, Cong L, Navarro ME, et al. Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review. Renew Sust Energ Rev. 2019;108:32–52.
  • Mahan G, Tritt T. Thermal conductivity of superlattices, in thermal conductivity: theory, properties, and applications (Physics of solids and liquids). Berlin, Heidelberg: Springer Science & Business Media; 2004.
  • Yüksel N. The review of some commonly used methods and techniques to measure the thermal conductivity of insulation materials. London, UK: IntechOpen; 2016.
  • Tong XC. Characterization methodologies of thermal management materials. advanced materials for thermal management of electronic packaging. New York, NY: Springer New York; 2011. p. 59–129.
  • Corsan JM. Axial heat flow methods of thermal conductivity measurement for good conducting materials. In: Maglić KD, Cezairliyan A, Peletsky VE, editors. Compendium of thermophysical property measurement methods: volume 2 recommended measurement techniques and practices. Boston, MA: Springer US; 1992. p. 3–31.
  • Czichos H, Saito T, Smith L. Springer handbook of materials measurement methods. Berlin, Heidelber: Springer; 2006.
  • Yesilata B, Turgut P. A simple dynamic measurement technique for comparing thermal insulation performances of anisotropic building materials. Energy Build. 2007;39:1027–1034.
  • Vozár L. A computer-controlled apparatus for thermal conductivity measurement by the transient hot wire method. J Therm Anal Calorim. 1996;46:495–505.
  • Kwon SY, Lee S. Precise measurement of thermal conductivity of liquid over a wide temperature range using a transient hot-wire technique by uncertainty analysis. Thermochim acta. 2012;542:18–23.
  • Solórzano E, Rodriguez-Perez MA, de Saja JA. Thermal conductivity of cellular metals measured by the transient plane sour method. Adv Eng Mater. 2008;10:371–377.
  • Min S, Blumm J, Lindemann A. A new laser flash system for measurement of the thermophysical properties. Thermochim acta. 2007;455:46–49.
  • Chaudhry AU, Mittal V Thermally conducting polymer nanocomposites: synthesis, properties and applications. Polymers in Oil and Gas Industry. Orange, Australia: Central West Publishing (CWP). ; 2018. p. 311–342.
  • Krupa P, Malinarič S. Using the transient plane source method for measuring thermal parameters of electroceramics. Int J Math, Comput, Statistical, Natural Phys Eng. 2014;8:733–738.
  • Hwang YJ, Ahn YC, Shin HS, et al. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys. 2006;6:1068–1071.
  • Merckx B, Dudoignon P, Garnier JP, et al. Simplified transient hot-wire method for effective thermal conductivity measurement in geo materials: microstructure and saturation effect. Adv Civil Eng. 2012;2012:625395.
  • Foreman J, Marcus S, Blaine R. Thermal conductivity of polymers, glasses & ceramics by modulated DSC. Brookfield, CT,(USA): Soc of Plastics Engineers; 1994.
  • Yüksel N. The review of some commonly used methods and techniques to measure the thermal conductivity of insulation materials. London, UK: Insulation Materials in Context of Sustainability: IntechOpen; 2016.
  • He X, Huang Y, Wan C, et al. Enhancing thermal conductivity of polydimethylsiloxane composites through spatially confined network of hybrid fillers. Compos Sci Technol. 2019;172:163–171.
  • Kalaitzidou K, Fukushima H, Drzal LT. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon. 2007;45:1446–1452.
  • Bhattacharya SK, Chaklader ACD. Review on Metal-Filled Plastics. Part 2. Polym Plast Technol Eng. 1983;20(1):35-59. doi:https://doi.org/10.1080/03602558308067736
  • Ngô C, Van de Voorde MH. Nanomaterials: doing more with less. Nanotechnology in a nutshell: from simple to complex systems. Paris: Atlantis Press; 2014. p. 55–70.
  • Pradhan S, Lach R, Le HH, et al. Effect of filler dimensionality on mechanical properties of nanofiller reinforced polyolefin elastomers. ISRN Polym Sci. 2013;2013:9.
  • Tavman IH, Akinci H. Transverse thermal conductivity of fiber reinforced polymer composites. Int J Heat Mass Transf. 2000;27:253–261.
  • Kusunose T, Yagi T, Firoz SH, et al. Fabrication of epoxy/silicon nitride nanowire composites and evaluation of their thermal conductivity. ?J Mater Chem A. 2013;1:3440–3445.
  • Yu J, Chen Y, Wuhrer R, et al. In situ formation of BN nanotubes during nitriding reactions. Chem Mater. 2005;17:5172–5176.
  • Hill RF, Supancic PH. Thermal conductivity of platelet-filled polymer composites. J Am Ceram Soc. 2002;85:851–857.
  • Xu C, Miao M, Jiang X, et al. Thermal conductive composites reinforced via advanced boron nitride nanomaterials. Compos Commun. 2018;10:103–109.
  • Si W, Sun J, He X, et al. Enhancing thermal conductivity via conductive network conversion from high to low thermal dissipation in polydimethylsiloxane composites. J Mater Chem C. 2020;8:3463–3475.
  • Sun J, Zhuang J, Shi J, et al. Highly elastic and ultrathin nanopaper-based nanocomposites with superior electric and thermal characteristics. J Mater Sci. 2019;54:8436–8449.
  • Wang S, Liu Y, Guo Y, et al. Optimal analysis for thermal conductivity variation of EVA/SCF composites prepared by spatial confining forced network assembly. Mater Today Commun. 2020;25:101206.
  • Li T-L, Hsu SL-C. Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J Phys Chem A. 2010;114:6825–6829.
  • Pashayi K, Fard HR, Lai F, et al. High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks. J Appl Phys. 2012;111:104310.
  • Zhou W, Qi S, Tu C, et al. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. J Appl Polym Sci. 2007;104:1312–1318.
  • Leung SN, Khan MO, Chan E, et al. Synergistic effects of hybrid fillers on the development of thermally conductive polyphenylene sulfide composites. J Appl Polym Sci. 2013;127:3293–3301.
  • Pak SY, Kim HM, Kim SY, et al. Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers. Carbon. 2012;50:4830–4838.
  • Zhu BL, Zheng H, Wang J, et al. Tailoring of thermal and dielectric properties of LDPE-matrix composites by the volume fraction, density, and surface modification of hollow glass microsphere filler. Compos Part B Eng. 2014;58:91–102.
  • Raman C Boron nitride in thermoplastics: effect of loading, particle morphology and processing conditions. Proceedings of the NATAS Annual conference on Thermal Analysis and Applications,  Atlanta, Georgia. Vol. 362008.
  • Choy CL, Leung WP, Kowk KW, et al. Elastic moduli and thermal conductivity of injection-molded short-fiber–reinforced thermoplastics. Polym Composites. 1992;13:69–80.
  • Choy CL, Wong YW, Yang GW, et al. Elastic modulus and thermal conductivity of ultradrawn polyethylene. J Polym Sci B Polym Phys. 1999;37:3359.
  • Choy CL, Luk WH, Chen FC. Thermal conductivity of highly oriented polyethylene. Polymer. 1978;19:155.
  • Han S, Lin JT, Yamada Y, et al. Enhancing the thermal conductivity and compressive modulus of carbon fiber polymer–matrix composites in the through-thickness direction by nanostructuring the interlaminar interface with carbon black. Carbon. 2008;46:1060–1071.
  • Solis KJ, Martin JE. Field-structured magnetic platelets as a route to improved thermal interface materials. J Appl Phys. 2012;111:073507.
  • Cho H-B, Konno A, Fujihara T, et al. Self-assemblies of linearly aligned diamond fillers in polysiloxane/diamond composite films with enhanced thermal conductivity. Compos Sci Technol. 2011;72:112–118.
  • Zhou W, Qi S, An Q, et al. Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bull. 2007;42:1863–1873.
  • Agari Y, Ueda A, Nagai S. Thermal conductivities of composites in several types of dispersion systems. J Appl Polym Sci. 1991;42:1665–1669.
  • Ebadi-Dehaghani H, Nazempour M. Thermal conductivity of nanoparticles filled polymers. London, UK: INTECH Open Access Publisher; 2012.
  • Mukesh Kumar P, Kumar J, Tamilarasan R, et al. Review on nanofluids theoretical thermal conductivity models. Eng. J. 2015;19:17.
  • Pietrak K, Wisniewski TS. A review of models for effective thermal conductivity of composite materials. J Power Technol. 2015;95:14.
  • Burger H. Das lertvermogen verdummter mischristallfreier lonsungen. Phys Z. 1915;20:73–76.
  • Hamilton R, Crosser O. Thermal conductivity of heterogeneous two-component systems. Indus Eng Chem Fundamental. 1962;1:187–191.
  • Rayleigh LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philosophical Magazine Series 5. 1892;34:481–502.
  • Swartz ET, Pohl RO. Thermal boundary resistance. Rev Mod Phys. 1989;61:605–668.
  • Powell BR, Youngblood GE, Hasselman DPH, et al. Effect of thermal expansion mismatch on the thermal diffusivity of glass-Ni composites. J Am Ceram Soc. 1980;63:581–586.
  • Benveniste Y, BD J. Effective thermal conductivity of composites with a thermal contact resistance between the constituents: nondilute case. J Appl Phys. 1987;61:2840–2843.
  • Landauer RKL. The electrical resistance of binary metallic mixtures. J Appl Phys. 1952;23:779–784.
  • Conway JH, Sloane NJA, Bannai E, et al. Sphere packings, lattices and groups. New York: Springer; 2013.
  • Devpura A, Phelan PE, Prasher RS Percolation theory applied to the analysis of thermal interface materials in flip-chip technology. ITHERM 2000 The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat No00CH37069), Istanbul, Turkey. Vol. 12000. p. 1–28.
  • Calvo-Jurado C, Parnell WJ. Hashin–Shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite material. J Math Chem. 2015;53:828–843.
  • Ngo I-L, Prabhakar Vattikuti SV, Byon C. A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers. Int J Heat Mass Transfer. 2017;114:727–734.
  • Öchsner A, Tane M, Nakajima H. Prediction of the thermal properties of lotus-type and quasi-isotropic porous metals: numerical and analytical methods. Mater Lett. 2006;60:2690–2694.
  • Gruescu C, Giraud A, Homand F, et al. Effective thermal conductivity of partially saturated porous rocks. Int J Solids Struct. 2007;44:811–833.
  • Khan KA, Khan SZ, Khan MA. Effective thermal conductivity of two-phase composites containing highly conductive inclusions. J Reinf Plast Compos. 2016;35:1586–1599.
  • Shahil KMF, Balandin AA. Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 2012;152:1331–1340.
  • Chu K, Li W-S, Tang F-L. Flatness-dependent thermal conductivity of graphene-based composites. Phys Lett A. 2013;377:910–914.
  • Yu W, Xie H, Yin L, et al. Exceptionally high thermal conductivity of thermal grease: synergistic effects of graphene and alumina. Int J Ther Sci. 2015;91:76–82.
  • Xu JZ, Gao BZ, Kang FY. A reconstruction of Maxwell model for effective thermal conductivity of composite materials. Appl Therm Eng. 2016;102:972–979.
  • Chu K, Jia -C-C, Li W-S. Effective thermal conductivity of graphene-based composites. Appl Phys Lett. 2012;101:121916.
  • Agrawal A, Satapathy A. Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. Int J Ther Sci. 2015;89:203–209.
  • Zhou S, Chiang S, Xu J, et al. Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite. Carbon. 2012;50:5052–5061.
  • Tian Z, Hu H, Sun Y. A molecular dynamics study of effective thermal conductivity in nanocomposites. Int J Heat Mass Transfer. 2013;61:577–582.
  • Zhou F, Cheng G. Lattice Boltzmann model for predicting effective thermal conductivity of composite with randomly distributed particles: considering effect of interactions between particles and matrix. Comput Mater Sci. 2014;92:157–165.
  • Liu W, Do I-H, Fukushima H, et al. Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets-polyamide nanocomposites. Carbon Lett. 2010;11:279–284.
  • Zhang B, Li J, Gao S, et al. Comparison of thermomechanical properties for weaved polyethylene and its nanocomposite based on the CNT junction by molecular dynamics simulation. J Phys Chem C. 2019;123:19412–19420.
  • Boroushak SH, Ansari R, Ajori S. Molecular dynamics simulations of the thermal conductivity of cross-linked functionalized single- and double-walled carbon nanotubes with polyethylene chains. Diam Relat Mater. 2018;86:173–178.
  • Hu L, Desai T, Keblinski P. Determination of interfacial thermal resistance at the nanoscale. Phys Rev B. 2011;83:195423.
  • Bui K, Grady BP, Papavassiliou DV. Heat transfer in high volume fraction CNT nanocomposites: effects of inter-nanotube thermal resistance. Chem Phys Lett. 2011;508:248–251.
  • Mortazavi B, Bardon J, Ahzi S. Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput Mater Sci. 2013;69:100–106.
  • Wang J, Cao C, Chen X, et al. Orientation and dispersion evolution of carbon nanotubes in ultra high molecular weight polyethylene composites under extensional-shear coupled flow: A dissipative particle dynamics study. Polymers. 2019;11:154.
  • Sun Y, Zhou L, Han Y, et al. A new anisotropic thermal conductivity equation for h-BN/polymer composites using finite element analysis. Int J Heat Mass Transfer. 2020;160:120157.
  • Li X, Fan X, Zhu Y, et al. Computational modeling and evaluation of the thermal behavior of randomly distributed single-walled carbon nanotube/polymer composites. Comput Mater Sci. 2012;63:207–213.
  • Bui K, Duong HM, Striolo A, et al. Effective heat transfer properties of graphene sheet nanocomposites and comparison to carbon nanotube nanocomposites. J Phys Chem C. 2011;115:3872–3880.
  • Razzaghi L, Khalkhali M, Rajabpour A, et al. Impact of nano sized fillers on the thermal transport properties of polyethylene nanocomposites: a comparative multiscale investigation. arXiv Preprint arXiv:200205127. 2020:1–17.
  • Kuang Y, Huang B. Effects of covalent functionalization on the thermal transport in carbon nanotube/polymer composites: a multi-scale investigation. Polymer. 2015;56:563–571.
  • Shahil KMF, Balandin AA. Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 2012;12:861–867.
  • Mokhena TC, Mochane MJ, Sefadi JS, et al. Thermal conductivity of graphite-based polymer composites. London, UK: Impact of Thermal Conductivity on Energy Technologies: IntechOpen; 2018.
  • Rzeczkowski P, Krause B, Pötschke P. Characterization of highly filled PP/graphite composites for adhesive joining in fuel cell applications. Polymers. 2019;11:462.
  • Wu H, Sun X, Zhang W, et al. Effect of solid-state shear milling on the physicochemical properties of thermally conductive low-temperature expandable graphite/low-density polyethylene composites. Compos Part A Appl Sci Manuf. 2013;55:27–34.
  • Wu H, Lu C, Zhang W, et al. Preparation of low-density polyethylene/low-temperature expandable graphite composites with high thermal conductivity by an in situ expansion melt blending process. Mater Des. 2013;52:621–629.
  • Gu J, Li N, Tian L, et al. High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Adv. 2015;5:36334–36339.
  • Kim Y, Kim M, Seong H-G, et al. Roles of silica-coated layer on graphite for thermal conductivity, heat dissipation, thermal stability, and electrical resistivity of polymer composites. Polymer. 2018;148:295–302.
  • Yang C, Navarro ME, Zhao B, et al. Thermal conductivity enhancement of recycled high density polyethylene as a storage media for latent heat thermal energy storage. Sol Energy Mater Sol Cells. 2016;152:103–110.
  • Liao Q, Liu Z, Liu W, et al. Extremely high thermal conductivity of aligned carbon nanotube-polyethylene composites. Sci Rep. 2015;5:16543.
  • Haggenmueller R, Guthy C, Lukes JR, et al. Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules. 2007;40:2417–2421.
  • Evgin T, Koca HD, Horny N, et al. Effect of aspect ratio on thermal conductivity of high density polyethylene/multi-walled carbon nanotubes nanocomposites. Compos Part A Appl Sci Manuf. 2016;82:208–213.
  • Mazov IN, Ilinykh IA, Kuznetsov VL, et al. Thermal conductivity of polypropylene-based composites with multiwall carbon nanotubes with different diameter and morphology. J Alloys Compd. 2014;586:S440–S2.
  • Patti A, Russo P, Acierno D, et al. The effect of filler functionalization on dispersion and thermal conductivity of polypropylene/multi wall carbon nanotubes composites. Compos Part B Eng. 2016;94:350–359.
  • Mittal V, Chaudhry AU. Polyethylene-thermally reduced graphene nanocomposites: comparison of masterbatch and direct melt mixing approaches on mechanical, thermal, rheological, and morphological properties. Colloid Polym Sci. 2016;294:1659–1670.
  • Noorunnisa Khanam P, AlMaadeed MA, Ouederni M, et al. Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites. Vacuum. 2016;130:63–71.
  • Pop E, Varshney V, Roy AK. Thermal properties of graphene: fundamentals and applications. MRS Bull. 2012;37:1273–1281.
  • Xie SH, Liu YY, Li JY. Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl Phys Lett. 2008;92:243121.
  • Huxtable ST, Cahill DG, Shenogin S, et al. Interfacial heat flow in carbon nanotube suspensions. Nat Mater. 2003;2:731–734.
  • Hu L, Desai T, Keblinski P. Thermal transport in graphene-based nanocomposite. J Appl Phys. 2011;110:033517.
  • Wang M, Galpaya D, Lai ZB, et al. Surface functionalization on the thermal conductivity of graphene–polymer nanocomposites. Int J Smart Nano Mater. 2014;5:123–132.
  • Noorunnisa Khanam P, AlMaadeed MA, Ouederni M, et al. Effect of two types of graphene nanoplatelets on the physico–mechanical properties of linear low–density polyethylene composites. Adv Manuf Polym Compos Sci. 2016;2:67–73.
  • Sofian NM, Rusu M, Neagu R, et al. Metal Powder-Filled Polyethylene Composites. V. Thermal Properties. J Thermoplast Composite Mater. 2001;14:20–33.
  • Molefi J, Luyt A, Krupa I. Comparison of the influence of Cu micro-and nano-particles on the thermal properties of polyethylene/Cu composites. Express Polym Lett. 2009;3:639–649.
  • Kumlutaş D, Tavman İH, Turhan Çoban M. Thermal conductivity of particle filled polyethylene composite materials. Compos Sci Technol. 2003;63:113–117.
  • Boudenne A, Ibos L, Fois M, et al. Electrical and thermal behavior of polypropylene filled with copper particles. Compos Part A Appl Sci Manuf. 2005;36:1545–1554.
  • Luyt AS, Molefi JA, Krump H. Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polym Degrad Stab. 2006;91:1629–1636.
  • Carson JK, Noureldin M. Measurements of the thermal diffusivity of linear-medium-density-polyethylene/aluminium composites using a transient comparative method. Int J Heat Mass Transf. 2009;36:458–461.
  • Krupa I, Cecen V, Boudenne A, et al. The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder. Mater Des. 2013;51:620–628.
  • Medellín-Banda DI, Navarro-Rodríguez D, Fernández-Tavizón S, et al. Enhancement of the thermal conductivity of polypropylene with low loadings of CuAg alloy nanoparticles and graphene nanoplatelets. Mater Today Commun. 2019;21:100695.
  • [accessed 2020 Sep 29]. https://en.wikipedia.org/wiki/Boron_nitride.
  • Alabdullah FT. Exfoliated hexagonal boron nitride based anti-corrosion polymer nano-composite coatings for carbon steel in a saline environment: Colorado school of mines. Golden, Colorado: Arthur Lakes Library; 2018.
  • Cheewawuttipong W, Fuoka D, Tanoue S, et al. Thermal and mechanical properties of polypropylene/boron nitride composites. Energy Procedia. 2013;34:808–817.
  • Song L, Ci L, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010;10:3209–3215.
  • [accessed 2020 June 29]. https://commons.wikimedia.org/wiki/File:Amorphous_Carbon.png.
  • Muratov DS, Stepashkin AA, Anshin SM, et al. Controlling thermal conductivity of high density polyethylene filled with modified hexagonal boron nitride (hBN). J Alloys Compd. 2018;735:1200–1205.
  • Zhang X, Shen L, Wu H, et al. Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion. Compos Sci Technol. 2013;89:24–28.
  • Yang S-Y, Huang Y-F, Lei J, et al. Enhanced thermal conductivity of polyethylene/boron nitride multilayer sheets through annealing. Compos Part A Appl Sci Manuf. 2018;107:135–143.
  • Li J-L, Yin J-H, Ji T, et al. Microstructure evolution effect on high-temperature thermal conductivity of LDPE/BNNS investigated by in-situ SAXS. Mater Lett. 2019;234:74–78.
  • Muratov DS, Kuznetsov DV, Il’inykh IA, et al. Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN. Compos Sci Technol. 2015;111:40–43.
  • Chi Q, Ma T, Dong J, et al. Enhanced thermal conductivity and dielectric properties of iron oxide/polyethylene nanocomposites induced by a magnetic field. Sci Rep. 2017;7:3072.
  • García-Fonte X, Ares-Pernas A, Cerecedo C, et al. Influence of phase morphology on the rheology and thermal conductivity of HDPE/PA6 immiscible blends with alumina whiskers. Polym Test. 2018;71:56–64.
  • Zhang X, Maira B, Hashimoto Y, et al. Selective localization of aluminum oxide at interface and its effect on thermal conductivity in polypropylene/polyolefin elastomer blends. Compos Part B Eng. 2019;162:662–670.
  • Fan J, Xu S. Thermal conductivity and mechanical properties of high density polyethylene composites filled with silicon carbide whiskers modified by cross-linked poly (vinyl alcohol). J Mater Sci Technol. 2018;34:2407–2414.
  • Zhang S, Cao X, Ma Y, et al. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym Lett. 2011;5:581–590.
  • Özmıhçı FÖ, Balköse D. Effects of particle size and electrical resistivity of filler on mechanical, electrical, and thermal properties of linear low density polyethylene–zinc oxide composites. J Appl Polym Sci. 2013;130:2734–2743.
  • Liang J-Z. Estimation of thermal conductivity for polypropylene/hollow glass bead composites. Compos Part B Eng. 2014;56:431–434.
  • Maira B, Takeuchi K, Chammingkwan P, et al. Thermal conductivity of polypropylene/aluminum oxide nanocomposites prepared based on reactor granule technology. Compos Sci Technol. 2018;165:259–265.
  • Kalaprasad G, Pradeep P, Mathew G, et al. Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres. Compos Sci Technol. 2000;60:2967–2977.
  • Zhu BL, Wang J, Zheng H, et al. Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles. Compos Part B Eng. 2015;69:496–506.
  • Ren P-G, Hou S-Y, Ren F, et al. The influence of compression molding techniques on thermal conductivity of UHMWPE/BN and UHMWPE/(BN+MWCNT) hybrid composites with segregated structure. Compos Part A Appl Sci Manuf. 2016;90:13–21.
  • Zhong S-L, Zhou Z-Y, Zhang K, et al. Formation of thermally conductive networks in isotactic polypropylene/hexagonal boron nitride composites via “Bridge Effect” of multi-wall carbon nanotubes and graphene nanoplatelets. RSC Adv. 2016;6:98571–98580.
  • Mazov I, Burmistrov I, Il’inykh I, et al. Anisotropic thermal conductivity of polypropylene composites filled with carbon fibers and multiwall carbon nanotubes. Polym Composites. 2015;36:1951–1957.
  • Bejan A. Constructal theory of organization in nature: dendritic flows, allometric laws and flight. WIT Trans Ecol Environ. 2002;57:57–66.
  • He Y, Chen Q, Yang S, et al. Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application. Compos Part A Appl Sci Manuf. 2018;108:12–22.
  • Kucukdogan N, Aydin L, Sutcu M. Theoretical and empirical thermal conductivity models of red mud filled polymer composites. Thermochim acta. 2018;665:76–84.
  • Muratov DS, Kuznetsov DV, Il’inykh IA, et al. Thermal conductivity of polypropylene filled with inorganic particles. J Alloys Compd. 2014;586:S451–S4.
  • Xu R, Chen M, Zhang F, et al. High thermal conductivity and low electrical conductivity tailored in carbon nanotube (carbon black)/polypropylene (alumina) composites. Compos Sci Technol. 2016;133:111–118.
  • Zabihi Z, Araghi H. Effective thermal conductivity of carbon nanostructure based polyethylene nanocomposite: influence of defected, doped, and hybrid filler. Int J Ther Sci. 2017;120:185–189.
  • Zhu BL, Wang J, Zheng H, et al. Thermal conductivity and dielectric properties of immiscible LDPE/epoxy blend filled with hybrid filler consisting of HGM and nitride particle. J Alloys Compd. 2017;701:499–507.
  • Che J, Jing M, Liu D, et al. Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation. Compos Part A Appl Sci Manuf. 2018;112:32–39.
  • Paszkiewicz S, Szymczyk A, Pawlikowska D, et al. Electrically and thermally conductive low density polyethylene-based nanocomposites reinforced by MWCNT or hybrid MWCNT/graphene nanoplatelets with improved thermo-oxidative stability. Nanomaterials. 2018;8:264.