9,185
Views
68
CrossRef citations to date
0
Altmetric
Focus on Composite Materials for Functional Electronic Devices

Conducting polymer-inorganic nanocomposite-based gas sensors: a review

, , ORCID Icon, , &
Pages 768-786 | Received 16 Jul 2020, Accepted 04 Sep 2020, Published online: 06 Jan 2021

References

  • Ibanez JG, Rincon ME, Gutierrez-Granados S, et al. Conducting polymers in the fields of energy, environmental remediation, and chemical-chiral sensors. Chem Rev. 2018;118:4731–4816.
  • Wu W. Stretchable electronics: functional materials, fabrication strategies and applications. Sci Technol Adv Mater. 2019;20:187–224.
  • Park SJ, Park CS, Yoon H. Chemo-electrical gas sensors based on conducting polymer hybrids. Polymers (Basel). 2017;9:155.
  • Huang J, Virji S, Weiller BH, et al. Nanostructured polyaniline sensors. Chem Eur J. 2004;10:1314–1319.
  • Zhang Y, Kim JJ, Chen D, et al. Electrospun polyaniline fibers as highly sensitive room temperature chemiresistive sensors for ammonia and nitrogen dioxide gases. Adv Funct Mater. 2014;24:4005–4014.
  • Kwon OS, Park E, Kweon OY, et al. Novel flexible chemical gas sensor based on poly(3,4-ethylenedioxythiophene) nanotube membrane. Talanta. 2010;82:1338–1343.
  • Yang G, Zhang M, Dong D, et al. TiO2 based sensor with butterfly wing configurations for fast acetone detection at room temperature. J Mater Chem C. 2019;7:11118–11125.
  • He L, Liu Y, Liu J, et al. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew Chem Int Ed Engl. 2013;52:3741–3745.
  • Zhou Y, Azumi R. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci Technol Adv Mater. 2016;17:493–516.
  • Giampiccolo A, Tobaldi DM, Leonardi SG, et al. Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2. Appl Catal B-Environ. 2019;243:183–194.
  • Pirsa S, Alizadeh N. Design and fabrication of gas sensor based on nanostructure conductive polypyrrole for determination of volatile organic solvents. Sensor Actuat B-Chem. 2010;147:461–466.
  • Li X, Xu J, Jiang Y, et al. Toward agricultural ammonia volatilization monitoring: A flexible polyaniline/Ti3C2T hybrid sensitive films based gas sensor. Sensor Actuat B-Chem. 2020;316:128144.
  • Jian Y, Hu W, Zhao Z, et al. Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 2020;12:71.
  • Hangarter CM, Chartuprayoon N, Hernández SC, et al. Hybridized conducting polymer chemiresistive nano-sensors. Nano Today. 2013;8:39–55.
  • Zhang Y, Zhang J, Jiang Y, et al. Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature. Sensor Actuat B-Chem. 2020;319:128293.
  • Li S, Liu A, Yang Z, et al. Room temperature gas sensor based on tin dioxide@ polyaniline nanocomposite assembled on flexible substrate: ppb-level detection of NH3. Sensor Actuat B-Chem. 2019;299:126970.
  • Lu CF, Liao SF, Wang KH, et al. Rapid template-free synthesis of nanostructured conducting polymer films by tuning their morphology using hyperbranched polymer additives. Nanoscale. 2019;11:20977–20986.
  • Yang Y, Li S, Yang W, et al. In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. ACS Appl Mater Inter. 2014;6:13807–13814.
  • Hong L, Li Y, Yang M. Fabrication and ammonia gas sensing of palladium/polypyrrole nanocomposite. Sensor Actuat B-Chem. 2010;145:25–31.
  • Wang X, Gong L, Zhang D, et al. Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites. Sensor Actuat B-Chem. 2020;322:128615.
  • Kaushik A, Kumar R, Arya SK, et al. Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem Rev. 2015;115:4571–4606.
  • Chang Q, Zhao K, Chen X, et al. Preparation of gold/polyaniline/multiwall carbon nanotube nanocomposites and application in ammonia gas detection. J Mater Sci. 2008;43:5861–5866.
  • Do J-S, Chang W-B. Amperometric nitrogen dioxide gas sensor based on PAn/Au/Nafion® prepared by constant current and cyclic voltammetry methods. Sensor Actuat B-Chem. 2004;101:97–106.
  • Shirsat MD, Bangar MA, Deshusses MA, et al. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Appl Phys Lett. 2009;94:083502.
  • Tai H, Jiang Y, Xie G, et al. Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film. Sensor Actuat B-Chem. 2007;125:644–650.
  • Barkade SS, Pinjari DV, Singh AK, et al. Ultrasound assisted miniemulsion polymerization for preparation of polypyrrole–zinc oxide (PPy/ZnO) functional latex for liquefied petroleum gas sensing. Ind Eng Chem Res. 2013;52:7704–7712.
  • Jun Seop L. Multidimensional polypyrrole/iron oxyhydroxide hybrid nanoparticles for chemical nerve gas agent sensing application. ACS Nano. 2013;11:10139—10147.
  • Wang L, Huang H, Xiao S, et al. Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanoparticles@cross-linked PANI with p-n heterojunctions. ACS Appl Mater Inter. 2014;6:14131–14140.
  • Sun J, Shu X, Tian Y, et al. Preparation of polypyrrole@WO3 hybrids with p-n heterojunction and sensing performance to triethylamine at room temperature. Sensor Actuat B-Chem. 2017;238:510–517.
  • Gong J, Li Y, Hu Z, et al. Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J Phys Chem C. 2010;114:9970–9974.
  • Li Y, Ban H, Yang M. Highly sensitive NH3 gas sensors based on novel polypyrrole-coated SnO2 nanosheet nanocomposites. Sensor Actuat B-Chem. 2016;224:449–457.
  • Li Y, Zhao H, Ban H, et al. Composites of Fe2O3 nanosheets with polyaniline: preparation, gas sensing properties and sensing mechanism. Sensor Actuat B-Chem. 2017;245:34–43.
  • Beniwal A, Sunny. Electrospun SnO2/PPy nanocomposite for ultra-low ammonia concentration detection at room temperature. Sensor Actuat B-Chem. 2019;296:126660.
  • Talwar V, Singh O, Singh RC. ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sensor Actuat B-Chem. 2014;191:276–282.
  • Li Y, Jiao M, Yang M. In-situ grown nanostructured ZnO via a green approach and gas sensing properties of polypyrrole/ZnO nanohybrids. Sensor Actuat B-Chem. 2017;238:596–604.
  • Bai S, Zhao Y, Sun J, et al. Preparation of conducting films based on α-MoO3/PANI hybrids and their sensing properties to triethylamine at room temperature. Sensor Actuat B-Chem. 2017;239:131–138.
  • Jun J, Lee JS, Shin DH, et al. Fabrication of a one-dimensional tube-in-tube polypyrrole/tin oxide structure for highly sensitive DMMP sensor applications. J Mater Chem A. 2017;5:17335–17340.
  • Li S, Lin P, Zhao L, et al. The room temperature gas sensor based on Polyaniline@flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection. Sensor Actuat B-Chem. 2018;259:505–513.
  • Kulkarni SB, Navale YH, Navale ST, et al. Enhanced ammonia sensing characteristics of tungsten oxide decorated polyaniline hybrid nanocomposites. Org Electron. 2017;45:65–73.
  • Jamalabadi H, Mani-Varnosfaderani A, Alizadeh N. Detection of alkyl amine vapors using PPy-ZnO hybrid nanocomposite sensor array and artificial neural network. Sensor Actuat A-Phys. 2018;280:228–237.
  • Kulkarni SB, Navale YH, Navale ST, et al. Hybrid polyaniline-WO3 flexible sensor: A room temperature competence towards NH3 gas. Sensor Actuat B-Chem. 2019;288:279–288.
  • Zhang J, Wang S, Xu M, et al. Polypyrrole-coated SnO hollow spheres and their application for ammonia sensor. J Phys Chem C. 2009;113:1662–1665.
  • Li S, Liu A, Yang Z, et al. Design and preparation of the WO3 hollow spheres@ PANI conducting films for room temperature flexible NH3 sensing device. Sensor Actuat B-Chem. 2019;289:252–259.
  • Deshpande NG, Gudage YG, Sharma R, et al. Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sensor Actuat B-Chem. 2009;138:76–84.
  • Bai S, Tian Y, Cui M, et al. Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature. Sensor Actuat B-Chem. 2016;226:540–547.
  • Betty CA, Choudhury S, Arora S. Tin oxide–polyaniline heterostructure sensors for highly sensitive and selective detection of toxic gases at room temperature. Sensor Actuat B-Chem. 2015;220:288–294.
  • Xu H, Ju D, Li W, et al. Low-working-temperature, fast-response-speed NO2 sensor with nanoporous-SnO2/polyaniline double-layered film. Sensor Actuat B-Chem. 2016;224:654–660.
  • Jian KS, Chang CJ, Wu JJ, et al. High response CO sensor based on a polyaniline/SnO2 nanocomposite. Polymers (Basel). 2019;11:184.
  • Sen T, Shimpi NG, Mishra S, et al. Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sensor Actuat B-Chem. 2014;190:120–126.
  • Liu C, Tai H, Zhang P, et al. A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sensor Actuat B-Chem. 2018;261:587–597.
  • Das M, Sarkar D. One-pot synthesis of zinc oxide - polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor. Ceram Int. 2017;43:11123–11131.
  • Li Y, Jiao M, Zhao H, et al. High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties. Sensor Actuat B-Chem. 2018;264:285–295.
  • Kotresh S, Ravikiran YT, SC VK, et al. Solution based–spin cast processed LPG sensor at room temperature. Sensor Actuat A-Phys. 2017;263:687–692.
  • Mane AT, Navale ST, Sen S, et al. Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature. Org Electron. 2015;16:195–204.
  • Jamalabadi H, Alizadeh N. Enhanced low-temperature response of PPy-WO3 hybrid nanocomposite based gas sensor deposited by electrospinning method for selective and sensitive acetone detection. IEEE Sens J. 2017;17:2322–2328.
  • Zhang D, Wu Z, Zong X, et al. Fabrication of polypyrrole/Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application. Sensor Actuat B-Chem. 2018;274:575–586.
  • Bulakhe RN, Patil SV, Deshmukh PR, et al. Fabrication and performance of polypyrrole (Ppy)/TiO2 heterojunction for room temperature operated LPG sensor. Sensor Actuat B-Chem. 2013;181:417–423.
  • Xu M, Zhang J, Wang S, et al. Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic–organic hybrids. Sensor Actuat B-Chem. 2010;146:8–13.
  • Bai S, Zhang K, Sun J, et al. Polythiophene-WO3 hybrid architectures for low-temperature H2S detection. Sensor Actuat B-Chem. 2014;197:142–148.
  • Taccola S, Greco F, Zucca A, et al. Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS Appl Mater Inter. 2013;5:6324–6332.
  • Zampetti E, Pantalei S, Muzyczuk A, et al. A high sensitive NO2 gas sensor based on PEDOT–PSS/TiO2 nanofibres. Sensor Actuat B-Chem. 2013;176:390–398.
  • Lin Y, Huang L, Chen L, et al. Fully gravure-printed NO2 gas sensor on a polyimide foil using WO3-PEDOT:PSS nanocomposites and Ag electrodes. Sensor Actuat B-Chem. 2015;216:176–183.
  • Kim SG, Jun J, Lee JS, et al. A highly sensitive wireless nitrogen dioxide gas sensor based on an organic conductive nanocomposite paste. J Mater Chem A. 2019;7:8451–8459.
  • Su P-G, Peng Y-T. Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization. Sensor Actuat B-Chem. 2014;193:637–643.
  • Mane AT, Navale ST, Patil VB. Room temperature NO2 gas sensing properties of DBSA doped PPy–WO3 hybrid nanocomposite sensor. Org Electron. 2015;19:15–25.
  • Athawale AA, Bhagwat SV, Katre PP. Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sensor Actuat B-Chem. 2006;114:263–267.
  • Jiang S, Chen J, Tang J, et al. Au nanoparticles-functionalized two-dimensional patterned conducting PANI nanobowl monolayer for gas sensor. Sensor Actuat B-Chem. 2009;140:520–524.
  • Choudhury A. Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sensor Actuat B-Chem. 2009;138:318–325.
  • Su P-G, Shiu -C-C. Flexible H2 sensor fabricated by layer-by-layer self-assembly of thin films of polypyrrole and modified in situ with Pt nanoparticles. Sensor Actuat B-Chem. 2011;157:275–281.
  • Patil UV, Ramgir NS, Karmakar N, et al. Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films. Appl Surf Sci. 2015;339:69–74.
  • Cho S, Lee JS, Jun J, et al. High-sensitivity hydrogen gas sensors based on Pd-decorated nanoporous poly(aniline-co-aniline-2-sulfonic acid): poly(4-styrenesulfonicacid). J Mater Chem A. 2014;2:1955–1966.
  • Yang X, Li L, Yan F. Polypyrrole/silver composite nanotubes for gas sensors. Sensor Actuat B-Chem. 2010;145:495–500.
  • Bai S, Sun C, Wan P, et al. Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors. Small. 2015;11:306–310.
  • Karmakar N, Fernandes R, Jain S, et al. Room temperature NO2 gas sensing properties of p-toluenesulfonic acid doped silver-polypyrrole nanocomposite. Sensor Actuat B-Chem. 2017;242:118–126.
  • Zhang J, Liu X, Wu S, et al. One-pot fabrication of uniform polypyrrole/Au nanocomposites and investigation for gas sensing. Sensor Actuat B-Chem. 2013;186:695–700.
  • Gaikwad N, Bhanoth S, More PV, et al. Chemically designed Pt/PPy nano-composite for effective LPG gas sensor. Nanoscale. 2014;6:2746–2751.
  • Zhao D, Li L, Niu W, et al. Highly conductive polythiophene films doped with chloroauric acid for dual-mode sensing of volatile organic amines and thiols. Sensor Actuat B-Chem. 2017;243:380–387.
  • Tuan CV, Tuan MA, Hieu NV, et al. Electrochemical synthesis of polyaniline nanowires on Pt interdigitated microelectrode for room temperature NH3 gas sensor application. Curr Appl Phys. 2012;12:1011–1016.
  • Liu C, Hayashi K, Toko K. Au nanoparticles decorated polyaniline nanofiber sensor for detecting volatile sulfur compounds in expired breath. Sensor Actuat B-Chem. 2012;161:504–509.
  • Park E, Kwon OS, Park SJ, et al. One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application. J Mater Chem. 2012;22:1521–1526.
  • Li Z-F, Blum FD, Bertino MF, et al. Understanding the response of nanostructured polyaniline gas sensors. Sensor Actuat B-Chem. 2013;183:419–427.
  • Mekki A, Joshi N, Singh A, et al. H2S sensing using in situ photo-polymerized polyaniline–silver nanocomposite films on flexible substrates. Org Electron. 2014;15:71–81.
  • Hien HT, Giang HT, Hieu NV, et al. Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH3 gas sensors. Sensor Actuat B-Chem. 2017;249:348–356.
  • Wang F, H W G, Swager TM. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J Am Chem Soc. 2008;130:5392–5393.
  • Ding M, Tang Y, Gou P, et al. Chemical sensing with polyaniline coated single-walled carbon nanotubes. Adv Mater. 2011;23:536–540.
  • Liao Y, Zhang C, Zhang Y, et al. Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. Nano Lett. 2011;11:954–959.
  • Wu H, Chen Z, Zhang J, et al. Phthalocyanine-mediated non-covalent coupling of carbon nanotubes with polyaniline for ultrafast NH3 gas sensors. J Mater Chem A. 2017;5:24493–24501.
  • Wan P, Wen X, Sun C, et al. Flexible transparent films Based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small. 2015;11:5409–5415.
  • Shen S, Fan Z, Deng J, et al. An LC passive wireless gas sensor based on PANI/CNT composite. Sensors (Basel). 2018;18:3022.
  • Al-Mashat L, Shin K, Kalantar-Zadeh K, et al. Graphene/polyaniline nanocomposite for hydrogen sensing. J Phys Chem C. 2010;114:16168–16173.
  • Wu Z, Chen X, Zhu S, et al. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sensor Actuat B-Chem. 2013;178:485–493.
  • Guo Y, Wang T, Chen F, et al. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale. 2016;8:12073–12080.
  • Sharma S, Hussain S, Singh S, et al. MWCNT-conducting polymer composite based ammonia gas sensors: A new approach for complete recovery process. Sensor Actuat B-Chem. 2014;194:213–219.
  • Abdulla S, Mathew TL, Pullithadathil B. Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sensor Actuat B-Chem. 2015;221:1523–1534.
  • Bora A, Mohan K, Pegu D, et al. A room temperature methanol vapor sensor based on highly conducting carboxylated multi-walled carbon nanotube/polyaniline nanotube composite. Sensor Actuat B-Chem. 2017;253:977–986.
  • Hong SY, Oh JH, Park H, et al. Polyurethane foam coated with a multi-walled carbon nanotube/polyaniline nanocomposite for a skin-like stretchable array of multi-functional sensors. NPG Asia Mater. 2017;9:e448–e448.
  • Liu B, Liu X, Yuan Z, et al. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sensor Actuat B-Chem. 2019;295:86–92.
  • Kim M-S, Kim S, Kong HJ, et al. Tunable electrical-Sensing performance of random-alternating layered graphene/polyaniline Nanoarchitectures. J Phys Chem C. 2016;120:18289–18295.
  • Cho S, Lee JS, Jun J, et al. Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection. Nanoscale. 2014;6:15181–15195.
  • Zhang L, Li C, Liu A, et al. Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors. J Mater Chem. 2012;22:8438.
  • Huang X, Hu N, Gao R, et al. Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J Mater Chem. 2012;22:22488.
  • Bai S, Zhao Y, Sun J, et al. Ultrasensitive room temperature NH3 sensor based on a graphene-polyaniline hybrid loaded on PET thin film. Chem Commun (Camb). 2015;51:7524–7527.
  • Hakimi M, Salehi A, Boroumand FA. Fabrication and characterization of an ammonia gas sensor based on PEDOT-PSS with N-doped graphene quantum dots dopant. IEEE Sens J. 2016;16:6149–6154.
  • Hakimi M, Salehi A, Boroumand FA, et al. Fabrication of a room temperature ammonia gas sensor based on polyaniline with N-doped graphene quantum dots. IEEE Sens J. 2018;18:2245–2252.
  • Gavgani JN, Hasani A, Nouri M, et al. Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sensor Actuat B-Chem. 2016;229:239–248.
  • Jiang T, Wang Z, Li Z, et al. Synergic effect within n-type inorganic–p-type organic nano-hybrids in gas sensors. J Mater Chem C. 2013;1:3017.
  • Liu C, Tai H, Zhang P, et al. Enhanced ammonia-sensing properties of PANI-TiO2-Au ternary self-assembly nanocomposite thin film at room temperature. Sensor Actuat B-Chem. 2017;246:85–95.
  • Shu J, Qiu Z, Lv S, et al. Cu2+-Doped SnO2 nanograin/polypyrrole nanospheres with synergic enhanced properties for ultrasensitive room-temperature H2S gas sensing. Anal Chem. 2017;89:11135–11142.
  • Li S, Diao Y, Yang Z, et al. Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection. Sensor Actuat B-Chem. 2018;276:526–533.
  • Park SJ, Kwon OS, Jang J. A high-performance hydrogen gas sensor using ultrathin polypyrrole-coated CNT nanohybrids. Chem Commun (Camb). 2013;49:4673–4675.
  • Vellaichamy B, Ponniah SK, Prakash P. An in-situ synthesis of novel Au@NG-PPy nanocomposite for enhanced electrocatalytic activity toward selective and sensitive sensing of catechol in natural samples. Sensor Actuat B-Chem. 2017;253:392–399.
  • Yin Y, Zhang H, Huang P, et al. Inducement of nanoscale Cu–BTC on nanocomposite of PPy–rGO and its performance in ammonia sensing. Mater Res Bull. 2018;99:152–160.
  • Xiang C, Jiang D, Zou Y, et al. Ammonia sensor based on polypyrrole–graphene nanocomposite decorated with titania nanoparticles. Ceram Int. 2015;41:6432–6438.
  • Andre RS, Shimizu FM, Miyazaki CM, et al. Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sensor Actuat B-Chem. 2017;238:795–801.
  • Kulkarni S, Patil P, Mujumdar A, et al. Synthesis and evaluation of gas sensing properties of PANI, PANI/SnO2 and PANI/SnO2/rGO nanocomposites at room temperature. Inorg Chem Commun. 2018;96:90–96.
  • Zhang D, Wu Z, Zong X. Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sensor Actuat B-Chem. 2019;289:32–41.
  • Zhang D, Wu Z, Zong X. Metal-organic frameworks-derived zinc oxide nanopolyhedra/S, N: graphene quantum dots/polyaniline ternary nanohybrid for high-performance acetone sensing. Sensor Actuat B-Chem. 2019;288:232–242.
  • Quan L, Sun J, Bai S, et al. A flexible sensor based on polyaniline hybrid using ZnO as template and sensing properties to triethylamine at room temperature. Appl Surf Sci. 2017;399:583–591.
  • Pang Z, Nie Q, Lv P, et al. Design of flexible PANI-coated CuO-TiO2-SiO2 heterostructure nanofibers with high ammonia sensing response values. Nanotechnology. 2017;28:225501.
  • Zhang D, Wu Z, Li P, et al. Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature. Sensor Actuat B-Chem. 2018;258:895–905.