5,008
Views
12
CrossRef citations to date
0
Altmetric
Focus on science and technology of element-strategic permanent magnets

Novel powder processing technologies for production of rare-earth permanent magnets

, , , &
Pages 150-159 | Received 01 Oct 2020, Accepted 08 Jan 2021, Published online: 03 Mar 2021

References

  • Seo Y, Morimoto S. Comparison of dysprosium security strategies in Japan for 2010-2030. Resour Policy. 2014;39:15–20.
  • Watanabe Y. Rare metal text 1. Shigen Chishitsu. 2010;60: 103–122. Japanese.
  • Iriyama T, Kobayashi K, Imaoka N, et al. Effect of nitrogen content on magnetic properties of Sm2Fe17Nx (0<x<6). IEEE Trans Magn. 1992;28:2326–2331.
  • Coey JMD, Sun H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compound in anmonia. J Magn Magn Mater. 1990;87(3):251–254.
  • Sakurada S, Tsutai A, Hirai T, et al. Structural and magnetic properties of rapidly quenched (R,Zr)(Fe,Co)10Nx. J Appl Phys. 1996;79(8):4611–4613.
  • Ohashi K, Tawara Y, Osugi R, et al. Magnetic properties of Fe-rich rare-earth intermetallic compounds with a ThMn12 structure. J App Phys. 1988;64(10):5714–5716.
  • Hirayama Y, Takahashi YK, Hirosawa S, et al. Intrinsic hard magnetic properties of Sm (Fe1-xCox)12 compound with ThMn12 structure. Scripta Mater. 2017;138:62–65.
  • Hirayama Y, Takahashi YK, Hirosawa S, et al. NdFeNx hard magnetic- compound with high magnetization and anisotropy. Scripta Mater. 2015;95:70–72.
  • Schnitzke K, Schultz L, Wecker J, et al. High coericivity in Sm2Fe17Nx magnets. Appl Phys Lett. 1990;57:2853–2855.
  • Takagi K, Nakayama H, Ozaki K, et al. Fabrication of High- performance Sm–Fe–N isotropic bulk magnets by a combination of high-pressure compaction and current sintering. J Magn Magn Mater. 2012;324(7):1337–1341.
  • Kime M, Tomimoto T, Yamamoto S, et al. Progress and prospects of SmFeN magnets. J Jpn Inst Met Mater. 2012;76(1):107–111. Japanese. .
  • Katter M, Wecker J, Schultz L. Structural and hard magnetic properties of rapidly solidified Sm–Fe–N. J Appl Phys. 1991;70(6):3188–3196.
  • Liu W, Wang Q, Sun XK, et al. Metastable Sm-Fe-N magnets prepared by mechanical alloying. J Magn Magn Mater. 1994;131(3):413–416.
  • Takagi K, Jinno M, Ozaki K. Preparation of TbCu7-type Sm-Fe powders by low-temperature HDDR treatment. J Magn Magn Mater. 2018;454:170–175.
  • Singleton EW, Strzeszewski J, Hadjipanayis GC, et al. Magnetic and structural properties of melt-spun rare-earth transition-metal intermetallics with ThMn12 structure. J Appl Phys. 1988;64(10):5717.
  • Dirba I, Sepehri-Amin H, Ohkubo T, et al. Development of ultra-fine grain sized SmFe12-based powders using hydrogenation disproportionation desorption recombination process. Acta Materialia. 2019;165:373–380.
  • Machida K, Nakatani Y, Adachi G. High-pressure sintering characteristics of Sm2Fe17Nx powder. Appl Phys Lett. 1993;62(22):2874–2876.
  • Ito S, Kikuchi M, Fujii T, et al. HIP sintering and magnetic properties of Sm2Fe17N3 with Zn additive. J Magn Magn Mater. 2004;280:15–21.
  • Zhang DT, Yue M, Zhang JX. Study on bulk Sm2Fe17Nx sintered magnets prepared by spark plasma sintering. Powder Metal. 2007;50(3):215–218.
  • Takagi K, Nakayama H, Ozaki K. Microstructural behavior on particle surfaces and interfaces in Sm2Fe17N3 powder compacts during low-temperature sintering. J Magn Magn Mater. 2012;324(15):2336–2341.
  • Hu B-P, Rao X-L, Xu J-M, et al. Magnetic properties of sintered Sm2Fe17Ny magnets. J Appl Phys. 1993;74(1):489–494.
  • Oda H, Kondo K, Uchida H, et al. A samarium-iron nitride magnet fabricated by shock-compaction technique. Jpn J Appl Phys. 1995;34:L35–37.
  • Mashimo T, Huang X, Hirosawa S, et al. Magnetic properties of fully dense Sm2Fe17N3 magnets prepared by shock compression. J Magn Magn Mater. 2000;210(1–3):109–120.
  • Chiba A, Ooyabu K, Morizono Y, et al. Shock comsolidation of Sm-Fe-N magnetic powders and magnetic properties. Mater Sci Forum. 2004;449-452:1037–1040.
  • Maki T, Sugimoto S, Kagotani T, et al. Microstructure and magnetic properties of Sm-Fe-N thick films produced by the aerosol deposition method. Mater Trans. 2004;45(2):369–372.
  • Saito T, Fukui M, Takeishi H. Sm-Fe-N bulk magnets produced by compression shearing method. Scripta Mater. 2005;53(10):1117–1121.
  • Saito T, Kitazima H. Hard magnetic properties of anisotropic Sm-Fe-N magnets produced by compression shearing method. J Magn Magn Mater. 2011;323(16):2154–2157.
  • Matsuura M, Nishijima Y, Tezuka N, et al. Increase of energy products of Zn-bonded Sm-Fe-N magnets with low oxygen content. J Magn Magn Mater. 2018;467:48–64.
  • Takagi K, Soda R, Jinno M, et al. Possibility of high-performance Sm2Fe17N3 sintered magnets by low-oxygen powder metallurgy process. J Magn Magn Mater. 2020;506:166811.
  • Otani Y, Moukarika A, Sun H, et al. Metal bonded Sm2Fe17N3−δ magnets. J Appl Phys. 1991;69(9):6735–6737.
  • Kuhrt C, Cerva H, Shultz K. Nanostructure of mechanically alloyed zinc-bonded Sm2Fe17Nx magnets. Appl Phys Lett. 1994;64(6):797–799.
  • Machida K, Noguchi K, Nishimura M, et al. High-performance alloyed in metal-bonded magnets produced from Zn/Sm2Fe17Nx powders. J Appl Phys. 2000;87,(9):5317–5319.
  • Imaoka N, Koyama Y, Nakao T, et al. High electrical resistance composite magnets of Sm2Fe17N3 powders coated with ferrite layer for high frequency application. J Appl Phys. 2008;103(7):07E129.
  • Saito T, Deguchi T, Yamamoto H. Magnetic properties of Sm-Fe-N bulk magnets produced from Cu-plated Sm-Fe-N powder. AIP Adv. 2017;7(5):056204.
  • Matsunami R, Matsuura M, Tezuka N, et al. Preparation of Sm-Fe-N bulk magnets with high maximum energy products. J Magn Soc Jpn. 2020;44(3):64–69.
  • Yamaguchi W, Soda R, Takagi K. Metal-coated Sm2Fe17N3 magnet powder with an oxide-free direct metal-metal interface. J Magn Magn Mater. 2020;498:166101.
  • Makita K, Hirosawa S. Coercivity of Zn evaporation-coated Sm2Fe17Nx fine powder and its bonded magnets. J Alloys Compd. 1997;260(1–2):236–241.
  • Fukunaga H, Aikawa T, Nagaoka S, et al. Improvement in hard magnetic properties of rapidly quenched Sm-Fe-N flakes by Zn-coating. J Magn Magn Mater. 1996;157(158):105–106.
  • Yamaguchi W, Takagi K. Effect of nonmagnetic overlay metal on coercivity Sm2Fe17N3 magnet powders. J Magn Magn Mater. 2020;516:167327.
  • Ramesh R, Thomas G, Ma M. Magnetization reversal in nucleation controlled magnets. II. Effect of grain size and size distribution on intrinsic coercivity of Fe‐Nd‐B magnets. J App Phys. 1988;64(11):6416–6423.
  • Hirayama Y, Panda AK, Okubo T, et al. High coercivity Sm2Fe17N3 submicron size powder prepared by polymerized-complex and reduction–diffusion process. Scripta Mater. 2016;120:27–30.
  • Okada S, Suzuki K, Node E, et al. Preparation of submicron-sized Sm2Fe17N3 fine powders with high coercivity by reduction-diffusion technique. J Alloy Compd. 2017;695:1617–1623.
  • Okada S, Node E, Takagi K, et al. Synthesis of Sm2Fe17N3 powder having a new level of high coercivity by preventing decrease of coercivity in washing step of reduction-diffusion process. J Alloy Compd. 2019;804:237–242.
  • Press release of national institute of advanced industrial science and technology. Available from: https://www.aist.go.jp/aist_j/press_release/pr2019/pr20191021/pr20191021.html [Accessed 21 Oct 2019].
  • Sepehri-Amin H, Liu L, Okubo T, et al. Microstructure and temperature dependent of coercivity of hot-deformed Nd–Fe–B magnets diffusion processed with Pr–Cu alloy. Acta Mater. 2015;99(15):297–306.
  • Dong Y, Zhang T, Xia Z, et al. Dispersible SmCo5 nanoparticles with huge coercivity. Nanoscale. 2019;11(36):16962.
  • Balamurugan B, Sellmyer DJ, Hadjipanayis GC, et al. Prospects for nanoparticle-based permanent magnets. Scripta Mater. 2012;67(6):542–547.
  • Akdogan NG, Hadjipanayis GC, Sellmyer DJ. Anisotropic Sm-(Co,Fe) nanoparticles by surfactant-assisted ball milling. J Appl Phys. 2009;105(7):07A710.
  • Akdogan NG, Hadjipanayis GC, Sellmyer DJ. Novel Nd2Fe14B nanoflakes and nanoparticles for the development of high energy nanocomposite magnets. Nanotechnology. 2010;21:1–5.
  • Stoyanov S, Skumryev V, Zhang Y, et al. High anisotropy Sm-Co nanoparticles: preparation by cluster gun technique and their magnetic properties. J Appl Phys. 2003;93(10):7592–7594.
  • Kambara M, Kitayama A, Homma K, et al. Nano-composite Si particle formation by plasma spraying for negative electrode of Li ion batteries. J Appl Phys. 2014;115:143302.
  • Pant A, Seth T, Raut VB, et al. Preparation of nano aluminium powder (NAP) using a thermal plasma: process development and characterization. Cent Eur J Energ Mater. 2016;13(1):53e71.
  • Tkatch VI, Limanovskii AI, Denisenko SN, et al. The effect of the melt-spinning processing parameters on the rate of cooling. Mater Sci Eng A. 2002;323(1–2):91–96.
  • Hirayama Y, Suzuki K, Yamaguchi W, et al. Cold welding behavior of fine bare aluminum powders prepared by new low oxygen induction thermal plasma system. J Alloy Compd. 2018;768:608–612.
  • Hirayama Y, Sigeta M, Liu Z, et al. Anisotropic Nd-Fe ultrafine particles with stable and metastable phases prepared by induction thermal plasma. J Alloy Compd 2021. (submitted).
  • Hirayama Y, Miyake T, Hono K. Rare-earth lean hard magnet compound NdFe12N. JOM. 2015;67(6):1344–1349.
  • Web site of Hitach Metals Ltd. Available from: http://www.hitachi-metals.co.jp/products/auto/el/pdf/nmx.pdf [Accessed May 1999].
  • Yamamoto H, Kosukekawa M, Nishio H, et al. Technical Report: properties, stability and applications of high-performance permanent magnets. Tokyo: The Institute of Electrical Engineers of Japan; 1999. Japanese.
  • Takagi K. Development of powder metallurgy process for realization of Sm-Fe-N sintered magnet. KINZOKU. 2020;90: 889–897. Japanese.