6,151
Views
8
CrossRef citations to date
0
Altmetric
Focus on Composite Materials for Functional Electronic Devices

Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence

, & ORCID Icon
Pages 326-344 | Received 09 Nov 2020, Accepted 29 Mar 2021, Published online: 14 May 2021

References

  • Ielmini D. Brain-inspired computing with resistive switching memory (RRAM): devices, synapses and neural networks. Microelectron Eng. 2018;190:44‒53.
  • Xia Q, Yang JJ. Memristive crossbar arrays for brain-inspired computing. Nat Mater. 2019;18(4):309‒323.
  • Tang J, Yuan F, Shen X, et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv Mater. 2019;31(49):1902761.
  • Zhu J, Zhang T, Yang Y, et al. A comprehensive review on emerging artificial neuromorphic devices. Appl Phys Rev. 2020;7(1):011312.
  • Lv Z, Wang Y, Chen J, et al. Semiconductor quantum dots for memories and neuromorphic computing systems. Chem Rev. 2020;120(9):3941‒4006.
  • Wang J, Zhuge F. Memristive synapses for brain-inspired computing. Adv Mater Technol. 2019;4(3):1800544.
  • Zhuge X, Wang J, Zhuge F. Photonic synapses for ultrahigh-speed neuromorphic computing. Phys Status Solidi Rapid Res Lett. 2019;13(9):1900082.
  • Mead C. Neuromorphic electronic systems. Proc IEEE. 1990;78(10):1629‒1636.
  • Merolla PA, Arthur JV, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science. 2014;345(6197):668‒673.
  • Diorio C, Hasler P, Minch BA, et al. A single-transistor silicon synapse. IEEE Trans Electron Devices. 1996;43(11):1972‒1980.
  • Fuller EJ, Keene ST, Melianas A, et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science. 2019;364(6440):570‒574.
  • Jo SH, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010;10(4):1297‒1301.
  • Yang R, Terabe K, Liu G, et al. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. ACS Nano. 2012;6(11):9515‒9521.
  • Wang Z, Joshi S, Savel’ev S, et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat Electron. 2018;1(2):137‒145.
  • Li Y, Zhong Y, Xu L, et al. Ultrafast synaptic events in a chalcogenide memristor. Sci Rep. 2013;3:1619.
  • Zhang X, Liu S, Zhao X, et al. Emulating short-term and long-term plasticity of bio-synapse based on Cu/a-Si/Pt memristor. IEEE Electron Device Lett. 2017;38(9):1208‒1211.
  • Yang X, Fang Y, Yu Z, et al. Nonassociative learning implementation by a single memristor-based multi-terminal synaptic device. Nanoscale. 2016;8(45):18897‒18904.
  • Wang Z, Zeng T, Ren Y, et al. Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. Nat Commun. 2020;11(1):1510.
  • Zhuge F, Li J, Chen H, et al. Single-crystalline metal filament-based resistive switching in a nitrogen-doped carbon film containing conical nanopores. Appl Phys Lett. 2015;106(8):083104.
  • Sengupta A, Azim ZA, Fong X, et al. Spin-orbit torque induced spike-timing dependent plasticity. Appl Phys Lett. 2015;106(9):093704.
  • Chua L. Resistance switching memories are memristors. Appl Phys A. 2011;102(4):765‒783.
  • Chua L. If it’s pinched it’s a memristor. Semicond Sci Technol. 2014;29(10):104001.
  • Chua LO. Memristor―the missing circuit element. IEEE Trans Circuits Syst. 1971;CT-18(5):507‒519.
  • Strukov DB, Snider GS, Stewart DR, et al. The missing memristor found. Nature. 2008;453(7191):80‒83.
  • Hickmott TW. Low-frequency negative resistance in thin anodic oxide films. J Appl Phys. 1962;33(9):2669‒2682.
  • Dearnaley G, Stoneham AM, Morgan DV. Electrical phenomena in amorphous oxide films. Rep Prog Phys. 1970;33(11):1129‒1191.
  • Oxley DP. Electroforming, switching and memory effects in oxide thin films. Electrocomp Sci Technol. 1977;3:217‒224.
  • Pagnia H, Sotnik N. Bistable switching in electroformed metal-insulator-metal devices. Phys Status Solidi. 1988;108(1):11‒65.
  • Waser R, Aono M. Nonoionics-based resistive switching memories. Nat Mater. 2007;6(11):833‒840.
  • Asamitsu A, Tomioka Y, Kuwahara H, et al. Current switching of resistive states in magnetoresistive manganites. Nature. 1997;388(6637):50‒52.
  • Kozicki MN, Yun M, Hilt L, et al. Applications of programmable resistance changes in metal-doped chalcogenides. Pennington NJ USA: Electrochem Soc; 1999. p. 298‒309.
  • Beck A, Bednorz JG, Gerber C, et al. Reproducible switching effect in thin oxide films for memory applications. Appl Phys Lett. 2000;77(1):139‒141.
  • Wedig A, Luebben M, Cho DY, et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat Nanotechnol. 2016;11(1):67‒75.
  • Yang Y, Zhang X, Qin L, et al. Probing nanoscale oxygen ion motion in memristive systems. Nat Commun. 2017;8:15173.
  • Zhao XL, Ma J, Xiao XH, et al. Breaking the Current-Retention Dilemma in Cation-Based Resistive Switching Devices Utilizing Graphene with Controlled Defects. Adv Mater. 2018;30(14):1705193.
  • Liu S, Lu N, Zhao X, et al. Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory. Adv Mater. 2016;28(48):10623‒10629.
  • Chen JY, Hsin CL, Huang CW, et al. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 2013;13(8):3671‒3677.
  • Wang M, Cai S, Pan C, et al. Robust memristors based on layered two-dimensional materials. Nat Electron. 2018;1(2):130‒136.
  • Peng S, Zhuge F, Chen X, et al. Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Appl Phys Lett. 2012;100(7):072101.
  • Lu Y, Alvarez A, Kao CH, et al. An electronic silicon-based memristor with a high switching uniformity. Nat Electron. 2019;2(2):66‒74.
  • Hu L, Yang J, Wang J, et al. All-optically controlled memristor for optoelectronic neuromorphic computing. Adv Funct Mater. 2021;31(4):2005582.
  • Boybat I, Gallo ML, Nandakumar SR, et al. Neuromorphic computing with multi-memristive synapses. Nat Commun. 2018;9:2514.
  • Kuzum D, Jeyasingh RGD, Lee B, et al. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 2012;12(5):2179‒2186.
  • Zhuge F, Li K, Fu B, et al. Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells. AIP Adv. 2015;5(5):057125.
  • Zhang SR, Zhou L, Mao JY, et al. Artificial synapse emulated by charge trapping-based resistive switching device. Adv Mater Technol. 2019;4(2):1800342.
  • Zhuge F, Dai W, He CL, et al. Nonvolatile resistive switching memory based on amorphous carbon. Appl Phys Lett. 2010;96(16):163505.
  • Zhuge F, Hu B, He C, et al. Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon. 2011;49:3796‒3802.
  • Kim S, Abbas Y, Jeon YR, et al. Engineering synaptic characteristics of TaOx/HfO2 bi-layered resistive switching device. Nanotechnology. 2018;29(41):415204.
  • Xiang Y, Huang P, Zhao Y, et al. Impacts of state instability and retention failure of filamentary analog RRAM on the performance of deep neural network. IEEE Trans Electron Devices. 2019;66(11):4517‒4522.
  • Kim HJ, Kim M, Beom K, et al. A Pt/ITO/CeO2/Pt memristor with an analog, linear, symmetric, and long-term stable synaptic weight modulation. APL Mater. 2019;7(7):071113.
  • Sokolov AS, Jeon YR, Ku B, et al. Ar ion plasma surface modification on the heterostructured TaOx/InGaZnO thin films for flexible memristor synapse. J Alloys Compd. 2020;822:153625.
  • Liu J, Yang H, Ji Y, et al. An electronic synaptic device based on HfO2/TiOx bilayer structure memristor with self-compliance and deep-Reset characteristics. Nanotechnology. 2018; 29(41): 415205.
  • Xiong W, Zhu LQ, Ye C, et al. Bilayered oxide-based cognitive memristor with brain-inspired learning activities. Adv Electron Mater. 2019;5(8):1900439.
  • Ryu JJ, Jeon K, Kim G, et al. Highly linear and symmetric weight modification in HfO2-Based memristive devices for high-precision weight entries. Adv Electron Mater. 2020;6(9):2000434.
  • Werner T, Vianello E, Bichler O, et al. Spiking neural networks based on OxRAM synapses for real-time unsupervised spike sorting. Front Neurosci. 2016;10:474.
  • Jiang Y, Huang P, Zhu D, et al. Design and hardware implementation of neuromorphic systems with RRAM synapses and threshold-controlled neurons for pattern recognition. IEEE Trans Circuits Syst I-Regul Pap. 2018;65(9):2726‒2738.
  • Yu S, Wu Y, Jeyasingh R, et al. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans Electron Devices. 2011;58(8):2729‒2737.
  • Dong Z, Zhou Z, Li Z, et al. Convolutional neural networks based on RRAM devices for image recognition and online learning tasks. IEEE Trans Electron Devices. 2019;66(1):793‒801.
  • Woo J, Moon K, Song J, et al. Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems. IEEE Electron Device Lett. 2016;37(8):994‒997.
  • Mahata C, Lee C, An Y, et al. Resistive switching and synaptic behaviors of an HfO2/Al2O3 stack on ITO for neuromorphic systems. J Alloys Compd. 2020;826:154434.
  • Liu C, Wang LG, Cao YQ, et al. Synaptic functions and a memristive mechanism on Pt/AlOx/HfOx/TiN bilayer-structure memristors. J Phys D: Appl Phys. 2020;53(3):035302.
  • Kim S, Chen J, Chen YC, et al. Neuronal dynamics in HfOx/AlOy-based homeothermic synaptic memristors with low-power and homogeneous resistive switching. Nanoscale. 2019;11(1):237‒245.
  • Liu L, Xiong W, Liu Y, et al. Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Adv Electron Mater. 2020;6(2):1901012.
  • Hsieh CC, Roy A, Chang YF, et al. A sub-1-volt analog metal oxide memristive-based synaptic device with large conductance change for energy-efficient spike-based computing systems. Appl Phys Lett. 2016;109(22):223501.
  • Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network. Nature. 2020;577(7792):641‒646.
  • Liu Z, Tang J, Gao B, et al. Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces. Nat Commun. 2020;11(1):4234.
  • Yin J, Zeng F, Wan Q, et al. Adaptive crystallite kinetics in homogenous bilayer oxide memristor for emulating diverse synaptic plasticity. Adv Funct Mater. 2018;28(19):1706927.
  • Yao P, Wu H, Gao B, et al. Face classification using electronic synapses. Nat Commun. 2017;8:15199.
  • Wu W, Wu H, Gao B, et al. Suppress variations of analog resistive memory for neuromorphic computing by localizing Vo formation. J Appl Phys. 2018;124(15):152108.
  • Zhou Y, Wu H, Gao B, et al. Associative memory for image recovery with a high-performance memristor array. Adv Funct Mater. 2019;29(30):1900155.
  • Kim S, Du C, Sheridan P, et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 2015;15(3):2203‒2211.
  • Alamgir Z, Beckmann K, Holt J, et al. Pulse width and height modulation for multi-level resistance in bi-layer TaOx based RRAM. Appl Phys Lett. 2017;111(6):063111.
  • Zidan MA, Jeong YJ, Lu WD. Temporal learning using second-order memristors. IEEE Trans Nanotechnol. 2017;16(4):721‒723.
  • Zhu X, Du C, Jeong YJ, et al. Emulation of synaptic metaplasticity in memristors. Nanoscale. 2017;9(1):45‒51.
  • Yan X, Wang J, Zhao M, et al. Artificial electronic synapse characteristics of a Ta/Ta2O5-x/Al2O3/InGaZnO4 memristor device on flexible stainless steel substrate. Appl Phys Lett. 2018;113(1):013503.
  • Wang J, Ren D, Zhang Z, et al. A radiation-hardening Ta/Ta2O5-x/Al2O3/InGaZnO4 memristor for harsh electronics. Appl Phys Lett. 2018;113(12):122907.
  • Sun Y, Xu H, Wang C, et al. A Ti/AlOx/TaOx/Pt analogue synapse for memristive neural network. IEEE Electron Device Lett. 2018;39(9):1298‒1301.
  • Jacobs-Gedrim RB, Agarwal S, Goeke RS, et al. Analog high resistance bilayer RRAM device for hardware acceleration of neuromorphic computation. J Appl Phys. 2018;124(20):202101.
  • Wang R, Shi T, Zhang X, et al. Bipolar analog memristors as artificial synapses for neuromorphic computing. Materials. 2018;11(11):2102.
  • Gao L, Wang IT, Chen PY, et al. Fully parallel write/read in resistive synaptic array for accelerating on-chip learning. Nanotechnology. 2015;26(45):455204.
  • Wang YF, Lin YC, Wang IT, et al. Characterization and modeling of nonfilamentary Ta/TaOx/TiO2/Ti analog synaptic device. Sci Rep. 2015;5:10150.
  • Wang IT, Chang CC, Chiu LW, et al. 3D Ta/TaOx/TiO2/Ti synaptic array and linearity tuning of weight update for hardware neural network applications. Nanotechnology. 2016;27(36):365204.
  • Chen JY, Wu MC, Ting YH, et al. Applications of p-n homojunction ZnO nanowires to one-diode one-memristor RRAM arrays. Scr Mater. 2020;187:439‒444.
  • Huang XD, Li Y, Li HY, et al. Forming-free, fast, uniform, and high endurance resistive switching from cryogenic to high temperatures in W/AlOx/Al2O3/Pt bilayer memristor. IEEE Electron Device Lett. 2020;41(4):549‒552.
  • Prezioso M, Merrikh-Bayat F, Hoskins BD, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature. 2015;521(7550):61‒64.
  • Adam GC, Hoskins BD, Prezioso M, et al. 3-D memristor crossbars for analog and neuromorphic computing applications. IEEE Trans Electron Devices. 2017;64(1):312‒318.
  • Banerjee W, Liu Q, Lv H, et al. Electronic imitation of behavioral and psychological synaptic activities using TiOx/Al2O3-based memristor devices. Nanoscale. 2017;9(38):14442‒14450.
  • Bayat FM, Prezioso M, Chakrabarti B, et al. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat Commun. 2018;9:2331.
  • Prezioso M, Mahmoodi MR, Bayat FM, et al. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits. Nat Commun. 2018;9:5311.
  • Serb A, Khiat A, Prodromakis T. Seamlessly fused digital-analogue reconfigurable computing using memristors. Nat Commun. 2018;9:2170.
  • Beilliard Y, Paquette F, Brousseau F, et al. Conductive filament evolution dynamics revealed by cryogenic (1.5 K) multilevel switching of CMOS-compatible Al2O3/TiO2 resistive memories. Nanotechnology. 2020;31(49):499601.
  • Yin X, Wang Y, Chang TH, et al. Memristive behavior enabled by amorphous–crystalline 2D oxide heterostructure. Adv Mater. 2020;32(22):2000801.
  • Hansen M, Zahari F, Kohlstedt H, et al. Unsupervised Hebbian learning experimentally realized with analogue memristive crossbar arrays. Sci Rep. 2018;8:88914.
  • Heo KJ, Kim HS, Lee JY, et al. Filamentary resistive switching and capacitance-voltage characteristics of the a-IGZO/TiO2 memory. Sci Rep. 2020;10:9276.
  • Sokolov AS, Jeon YR, Kim S, et al. Bio-realistic synaptic characteristics in the cone-shaped ZnO memristive device. NPG Asia Mater. 2019;11:5.
  • Dang B, Wu Q, Song F, et al. A bio-inspired physically transient/biodegradable synapse for security neuromorphic computing based on memristors. Nanoscale. 2018;10(43):20089‒20095.
  • Wang ZQ, Xu HY, Li XH, et al. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv Funct Mater. 2012;22(13):2759‒2765.
  • Bang S, Kim MH, Kim TH, et al. Gradual switching and self-rectifying characteristics of Cu/α-IGZO/p+-Si RRAM for synaptic device application. Solid State Electron. 2018;150:60‒65.
  • Zhang L, Xu Z, Han J, et al. Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment. J Mater Sci Technol. 2020;49:1‒6.
  • Xu H, Zhai X, Wang Z, et al. An epitaxial synaptic device made by a band-offset BaTiO3/Sr2IrO4 bilayer with high endurance and long retention. Appl Phys Lett. 2019;114(10):102904.
  • Bousoulas P, Michelakaki I, Skotadis E, et al. Low-power forming free TiO2–x/HfO2–y/TiO2–x-trilayer RRAM devices exhibiting synaptic property characteristics. IEEE Trans Electron Devices. 2017;64(8):3151‒3158.
  • Yu S, Gao B, Fang Z, et al. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv Mater. 2013;25(12):1774‒1779.
  • Lashkare S, Panwar N, Kumbhare P, et al. PCMO based RRAM and NPN Bipolar Selector as Synapse for Energy Efficient STDP. IEEE Electron Device Lett. 2017;38(9):1212‒1215.
  • Moon K, Fumarola A, Sidler S, et al. Bidirectional non-filamentary RRAM as an analog neuromorphic synapse, Part I: al/Mo/Pr0.7Ca0.3MnO3 material improvements and device measurements. IEEE J Electron Devices Soc. 2018;6(1):146‒155.
  • Jiang H, Han L, Lin P, et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci Rep. 2016;6:28525.
  • Menzel S, Bottger U, Waser R. Simulation of multilevel switching in electrochemical metallization memory cells. J Appl Phys. 2012;111(1):014501.
  • Guo X, Wang Q, Lv X, et al. SiO2/Ta2O5 heterojunction ECM memristors: physical nature of their low voltage operation with high stability and uniformity. Nanoscale. 2020;12(7):4320‒4327.
  • Ali A, Abbas Y, Abbas H, et al. Dependence of InGaZnO and SnO2 thin film stacking sequence for the resistive switching characteristics of conductive bridge memory devices. Appl Surf Sci. 2020;525:146390.
  • Tsuruoka T, Terabe K, Hasegawa T, et al. Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology. 2010;21(42):425205.
  • Ioannou PS, Kyriakides E, Schneegans O, et al. Evidence of biorealistic synaptic behavior in diffusive Li-based two-terminal resistive switching devices. Sci Rep. 2020;10:8711.
  • Pan R, Li J, Zhuge F, et al. Synaptic devices based on purely electronic memristors. Appl Phys Lett. 2016;108(1):013504.
  • Wang J, Pan R, Cao H, et al. Anomalous rectification in a purely electronic memristor. Appl Phys Lett. 2016;109(14):143505.
  • Yoon JH, Song SJ, Yoo IH, et al. Highly uniform, electroforming-free, and self-rectifying resistive memory in the Pt/Ta2O5/HfO2-x/TiN structure. Adv Funct Mater. 2014;24(32):5086‒5095.
  • Yoon JH, Kim KM, Song SJ, et al. Pt/Ta2O5/HfO2−x/Ti resistive switching memory competing with multilevel NAND flash. Adv Mater. 2015;27(25):3811‒3816.
  • Kuzmichev DS, Chernikova AG, Kozodaev MG, et al. Resistance switching peculiarities in nonfilamentary self-rectified TiN/Ta2O5/Ta and TiN/HfO2/Ta2O5/Ta stacks. Phys Status Solidi A. 2020;217(18):1900952.
  • Linn E, Roland R, Kugeler C, et al. Complementary resistive switches for passive nanocrossbar memories. Nat Mater. 2010;9(5):403‒406.
  • Choi H, Jung H, Lee J, et al. An electrically modifiable synapse array of resistive switching memory. Nanotechnology. 2009;20(34):345201.
  • Bessonov AA, Kirikova MN, Petukhov DI, et al. Layered memristive and memcapacitive switches for printable electronics. Nat Mater. 2015;14(2):199‒204.
  • Wang C, He W, Tong Y, et al. Memristive devices with highly repeatable analog states boosted by graphene quantum dots. Small. 2017;13(20):1603435.
  • Tao Y, Wang Z, Xu H, et al. Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano Energy. 2020;71:104628.
  • Lim S, Kwak M, Hwang H. Improved synaptic behavior of CBRAM using internal voltage divider for neuromorphic systems. IEEE Trans Electron Devices. 2018;65(9):3976‒3981.
  • Lim S, Kwak M, Hwang H. One transistor-two resistive RAM (1T2R) device for realizing bidirectional and analog neuromorphic synapse device. Nanotechnology. 2019;30(45):455201.
  • Yan X, Pei Y, Chen H, et al. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Adv Mater. 2019;31(7):1805284.
  • Wang DT, Dai YW, Xu J, et al. Resistive switching and synaptic behaviors of TaN/Al2O3/ZnO/ITO flexible devices with embedded Ag nanoparticles. IEEE Electron Device Lett. 2016;37(7):878‒881.
  • Lim S, Sung C, Kim H, et al. Improved synapse device with MLC and conductance linearity using quantized conduction for neuromorphic systems. IEEE Electron Device Lett. 2018;39(2):312‒315.
  • Kumar M, Abbas S, Lee JH, et al. Controllable digital resistive switching for artificial synapses and pavlovian learning algorithm. Nanoscale. 2019;11(33):15596‒15604.
  • Yan X, Qin C, Lu C, et al. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing. ACS Appl Mater Interfaces. 2019;11(51):48029‒48038.
  • Lu YF, Li Y, Li HY, et al. Low-power artificial neurons based on Ag/TiN/HfAlOx/Pt threshold switching memristor for neuromorphic computing. IEEE Electron Device Lett. 2020;41(8):1245‒1248.
  • Yan X, Zhang L, Chen H, et al. Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Adv Funct Mater. 2018;28(40):1803728.
  • Lee C, Lee J, Kim M, et al. Two-terminal structured synaptic device using ionic electrochemical reaction mechanism for neuromorphic system. IEEE Electron Device Lett. 2019;40(4):546‒549.
  • Choi Y, Lee C, Kim M, et al. Structural engineering of Li based electronic synapse for high reliability. IEEE Electron Device Lett. 2019;40(12):1992‒1995.
  • Xu Z, Li F, Wu C, et al. Ultrathin electronic synapse having high temporal/spatial uniformity and an Al2O3/graphene quantum dots/Al2O3 sandwich structure for neuromorphic computing. NPG Asia Mater. 2019;11:18.
  • Ma F, Xu Z, Liu Y, et al. Highly-reliable electronic synapse based on Au@Al2O3 core-shell nanoparticles for neuromorphic applications. IEEE Electron Device Lett. 2019;40(10):1610‒1613.
  • Kwon DE, Kim J, Kwon YJ, et al. Area-type electronic bipolar resistive switching of Pt/Al2O3/Si3N3.0/Ti with forming-free, self-rectification, and nonlinear characteristics. Phys Status Solidi Rapid Res Lett. 2020;14(8):2000209.
  • Mandal S, El-Amin A, Alexander K, et al. Novel synaptic memory device for neuromorphic computing. Sci Rep. 2014;4:5333.
  • Mandal S, Long B, Jha R. Study of synaptic behavior in doped transition metal oxide-based reconfigurable devices. IEEE Trans Electron Devices. 2013;60(12):4219‒4225.
  • Covi E, Brivio S, Fanciulli M, et al. Synaptic potentiation and depression in Al: hfO2-basedmemristor. Microelectron Eng. 2015;147:41‒44.
  • Chandrasekaran S, Simanjuntak FM, Saminathan R, et al. Improving linearity by introducing Al in HfO2 as memristor synapse device. Nanotechnology. 2019;30(44):445205.
  • Sun X, Zhang T, Cheng C, et al. A memristor-based in-memory computing network for Hamming code error correction. IEEE Electron Device Lett. 2019;40(7):1080‒1083.
  • Park J, Park E, Kim S, et al. Nitrogen-induced enhancement of synaptic weight reliability in titanium oxide-based resistive artificial synapse and demonstration of the reliability effect on the neuromorphic system. ACS Appl Mater Interfaces. 2019;11(35):32178‒32185.
  • Wu PY, Zheng HX, Shih CC, et al. Improvement of resistive switching characteristics in zinc oxide-based resistive random access memory by ammoniation annealing. IEEE Electron Device Lett. 2020;41(3):357‒360.
  • Wang W, Pedretti G, Milo V, et al. Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses. Sci Adv. 2018;4(9):eaat4752.
  • Wang W, Predretti G, Milo V, et al. Computing of temporal information in spiking neural networks with ReRAM synapses. Faraday Discuss. 2019;213:453‒469.
  • Chen W, Fang R, Balaban MB, et al. A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells. Nanotechnology. 2016;27(25):255202.
  • Yan X, Zhao J, Liu S, et al. Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv Funct Mater. 2018;28(1):1705320.
  • Wang Y, Zhang Z, Xu M, et al. Self-doping memristors with equivalently synaptic ion dynamics for neuromorphic computing. ACS Appl Mater Interfaces. 2019;11(27):24230‒24240.
  • Wang Z, Joshi S, Savel’ev SE, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater. 2017;16(1):101‒108.
  • Lubben M, Cuppers F, Mohr J, et al. Design of defect-chemical properties and device performance in memristive systems. Sci Adv. 2020;6(19):eaaz9079.
  • Wang TY, Meng JL, Rao MY, et al. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 2020;20(6):4111‒4120.
  • Hu SG, Liu Y, Liu Z, et al. Associative memory realized by a reconfigurable memristive Hopfield neural network. Nat Commun. 2015;6:7522.
  • Hota MK, Hedhili MN, Wehbe N, et al. Multistate resistive switching memory for synaptic memory applications. Adv Mater Interfaces. 2016;3(18):1600192.
  • Yan X, Zhou Z, Zhao J. Flexible memristors as electronic synapses for neuroinspired computation based on scotch tape-exfoliated mica substrates. Nano Res. 2018;11(3):1183‒1192.
  • Zhao J, Zhou Z, Zhang Y, et al. An electronic synapse memristor device with conductance linearity using quantized conduction for neuroinspired computing. J Mater Chem C. 2019;7(5):1298‒1306.
  • Yi W, Tsang KK, Lam SK, et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat Commun. 2018;9:4661.
  • Hu L, Fu S, Chen Y. Ultrasensitive memristive synapses based on lightly oxidized sulfide films. Adv Mater. 2017;29(24):1606927.
  • Zhao H, Dong Z, Tian H, et al. Atomically thin femtojoule memristive device. Adv Mater. 2017;29(47):1703232.
  • Esqueda IS, Zhao H, Wang H. Efficient learning and crossbar operations with atomically-thin 2-D material compound synapses. J Appl Phys. 2018;124(15):152133.
  • Park S, Siddik M, Noh J. A nitrogen-treated memristive device for tunable electronic synapses. Semicond Sci Technol. 2014;29(10):104006.
  • Wang Q, Niu G, Roy S, et al. Interface-engineered reliable HfO2-based RRAM for synaptic simulation. J Mater Chem C. 2019;7(40):12682‒12687.
  • Zhang H, Ju X, Yew KS. Implementation of simple but powerful trilayer oxide-based artificial synapses with a tailored bio-synapse-like structure. ACS Appl Mater Interfaces. 2020;12(1):1036‒1045.
  • Wan Q, Zeng F, Yin J, et al. Phase-change nanoclusters embedded in a memristor for simulating synaptic learning. Nanoscale. 2019;11(12):5684‒5692.
  • Brownlee BJ, Tsui LK, Vempati K, et al. Additive manufacturing and characterization of AgI and AgI–Al2O3 composite electrolytes for resistive switching devices. J Appl Phys. 2020;128(3):035103.
  • Kuzum D, Yu S, Wong HSP. Synaptic electronics: materials, devices and applications. Nanotechnology. 2013;24(38):382001.
  • Kuzum D, Jeyasingh RGD, Yu S, et al. Low-energy robust neuromorphic computation using synaptic devices. IEEE Trans Electron Devices. 2012;59(12):3489–3494.
  • Yu S, Gao B, Fang Z, et al. A neuromorphic visual system using RRAM synaptic devices with sub-pJ energy and tolerance to variability: experimental characterization and large-scale modeling. IEEE Int Electron Devices Meeting. 2012;10.4.1–10.4.4.
  • Querlioz D, Bichler O, Gamrat C. Simulation of a memristor-based spiking neural network immune to device variations. Int Joint Conf on Neural Networks. 2011;1775–1781.
  • Tuma T, Pantazi A, Gallo ML, et al. Stochastic phase-change neurons. Nat Nanotechnol. 2016;11(8):693–699.