7,611
Views
19
CrossRef citations to date
0
Altmetric
Focus on Science and Technology of Element-Strategic Permanent Magnets

Most frequently asked questions about the coercivity of Nd-Fe-B permanent magnets

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 386-403 | Received 18 Jan 2021, Accepted 07 Apr 2021, Published online: 04 Jun 2021

References

  • Sagawa M, Fujimura S, Togawa N, et al. New material for permanent magnets on a base of Nd and Fe. J Appl Phys. 1984;55:2083–2087.
  • Croat JJ, Herbst JF, Lee RW, et al. Pr‐Fe and Nd‐Fe‐based materials: a new class of high‐performance permanent magnets. J Appl Phys. 1984;55:2078–2082.
  • Yang Y, Walton A, Sheridan R, et al. REE recovery from end-of-life NdFeB permanent magnet scrap: a critical review. J Sustain Metall. 2017;3:122–149.
  • Sagawa M, Fujimura S, Yamamoto H, et al. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Trans Magn. 1984;20:1584–1589.
  • Hirosawa S, Matsuura Y, Yamamoto H, et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J Appl Phys. 1986;59:873–879.
  • Hono K, Sepehri-Amin H. Strategy for high-coercivity Nd–Fe–B magnets. Scr Mater. 2012;67:530–535.
  • Hono K, Sepehri-Amin H. Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets. Scr Mater. 2018;151:6–13.
  • Mishra RK, Chen JK, Thomas G. Effect of annealing on the microstructure of sintered Nd‐Fe‐B magnets. J Appl Phys. 1986;59:2244–2246.
  • Fidler J, Bernardi J. Transmission electron microscope characterization of cast and hot‐worked R‐Fe‐B:Cu(R =Nd,Pr) permanent magnets. J Appl Phys. 1991;70:6456–6458.
  • Engelmann HJ, Kim AS, Thomas G. Microstructure and magnetic effects of small Cu additions to (Nd,Dy)FeB magnets. Scr Mater. 1997;36:55–62.
  • Bernardi J, Fidler J. Preparation and transmission electron microscope investigation of sintered Nd15.4Fe75.7B6.7Cu1.3Nb0.9 magnets. J Appl Phys. 1994;76:6241–6243.
  • Vial F, Joly F, Nevalainen E, et al. Improvement of coercivity of sintered NdFeB permanent magnets by heat treatment. J Magn Magn Mater. 2002;242–245:1329–1334.
  • Velicescu M, Fernengel W, Rodewald W, et al. High-energy sintered Nd-Dy-Fe-B magnets with Co and Cu additions. J Magn Magn Mater. 1996;157–158:47–48.
  • Gabay AM, Zhang Y, Hadjipanayis GC. Effect of very small additions on the coercivity of Dy-free Nd–Fe–(Co)–B-sintered magnets. J Magn Magn Mater. 2002;238:226–232.
  • Pandian S, Chandrasekaran V, Markandeyulu G, et al. Effect of Al, Cu, Ga, and Nb additions on the magnetic properties and microstructural features of sintered NdFeB. J Appl Phys. 2002;92:6082–6086.
  • Ahmad I, Davies HA, Buckley RA. Ultra high coercivity Nd-Fe-B permanent magnet alloy with small addition of Ga. Mater Lett. 1994;20:139–142.
  • Yan A, Song X, Chen Z, et al. Characterization of microstructure and coercivity of Nd–Fe–B magnets with Ti and Al or Cu addition. J Magn Magn Mater. 1998;185:369–374.
  • Li WF, Ohkubo T, Akiya T, et al. The role of Cu addition in the coercivity enhancement of sintered Nd-Fe-B permanent magnets. J Mater Res. 2009;24:413–420.
  • Li WF, Ohkubo T, Hono K. Effect of post-sinter annealing on the coercivity and microstructure of Nd–Fe–B permanent magnets. Acta Mater. 2009;57:1337–1346.
  • Fidler J, Schrefl T. Overview of Nd–Fe–B magnets and coercivity. J Appl Phys. 1996;79:5029.
  • Sepehri-Amin H, Ohkubo T, Shima T, et al. Grain boundary and interface chemistry of an Nd–Fe–B-based sintered magnet. Acta Mater. 2012;60:819–830.
  • Fidler J, Schrefl T, Sasaki S, et al. The role of intergranular regions in sintered Nd-Fe-B magnets with (BH)max < 420 kj/m3 (52.5 MGOe). Proceedings of XI Int. Symposium on Magnetic Anisotropy and Coercivity in Rare Earth Transition Metal Alloys, Sendai, Japan; 2000.
  • Nakamura T, Yasui A, Kotani Y, et al. Direct observation of ferromagnetism in grain boundary phase of Nd-Fe-B sintered magnet using soft x-ray magnetic circular dichroism. Appl Phys Lett. 2014;105:202404.
  • Kohashi T, Motai K, Nishiuchi T, et al. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy. Appl Phys Lett. 2014;104:232408.
  • Murakami Y, Tanigaki T, Sasaki TT, et al. Magnetism of ultrathin intergranular boundary regions in Nd–Fe–B permanent magnets. Acta Mater. 2014;71:370–379.
  • Schrefl T, Fidler J, Kronmüller H. Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys Rev B. 1994;49:6100–6110.
  • Fujisaki J, Furuya A, Uehara Y, et al. Micromagnetic simulation of the orientation dependence of grain boundary properties on the coercivity of Nd-Fe-B sintered magnets. AIP Adv. 2016;6:056028.
  • Sasaki TT, Ohkubo T, Hono K. Structure and chemical compositions of the grain boundary phase in Nd-Fe-B sintered magnets. Acta Mater. 2016;115:269–277.
  • Sakuma A, Suzuki T, Furuuchi T, et al. Magnetism of Nd–Fe films as a model of grain boundary phase in Nd–Fe–B permanent magnets. Appl Phys Express. 2016;9:013002.
  • Fidler J, Groiss C, Tokunaga M. The influence of Ga-substitution on the coercivity of Nd-(Fe,Co)-B sintered permanent magnets. IEEE Trans Magn. 1990;26:1948–1950.
  • Bernardi J, Fidler J, Seeger M, et al. Preparation and TEM-study of sintered Nd18Fe74B6Ga1Nb1 magnets. IEEE Trans Magn. 1993;29:2773–2775.
  • Tokunaga M, Kogure H, Endoh M, et al. Improvement of thermal stability of Nd-Dy-Fe-Co-B sintered magnets by additions of Al, Nd and Ga. IEEE Trans Magn. 1987;23:2287–2289.
  • Tsutai A, Sakai I, Mizoguchi T, et al. Effect of Ga addition to NdFeCoB on their magnetic properties. Appl Phys Lett. 1987;51:1043–1045.
  • Nakajima K, Yamazaki T. Japan Patent. 2015; 5767788.
  • Sasaki TT, Ohkubo T, Takada Y, et al. Formation of non-ferromagnetic grain boundary phase in a Ga-doped Nd-rich Nd–Fe–B sintered magnet. Scr Mater. 2016;113:218–221.
  • Niitsu K, Sato A, Sasaki TT, et al. Magnetization measurements for grain boundary phases in Ga-doped Nd-Fe-B sintered magnet. J Alloys Compd. 2018;752:220–230.
  • Soderžnik M, Sepehri-Amin H, Sasaki TT, et al. Magnetization reversal of exchange-coupled and exchange-decoupled Nd-Fe-B magnets observed by magneto-optical Kerr effect microscopy. Acta Mater. 2017;135:68–76.
  • Ramesh R, Srikrishna K. Magnetization reversal in nucleation controlled magnets. I. Theory. J Appl Phys. 1988;64:6406–6415.
  • Nothnagel P, Müller KH, Eckert D, et al. The influence of particle size on the coercivity of sintered NdFeB magnets. J Magn Magn Mater. 1991;101:379–381.
  • Uestuener K, Katter M, Rodewald W. Dependence of the mean grain size and coercivity of sintered Nd–Fe–B magnets on the initial powder particle size. IEEE Trans Magn. 2006;42:2897–2899.
  • Li WF, Ohkubo T, Hono K, et al. The origin of coercivity decrease in fine grained Nd–Fe–B sintered magnets. J Magn Magn Mater. 2009;321:1100–1105.
  • Une M, Sagawa Y. Enhancement of coercivity of the Nd-Fe-B sintered magnets by decreasing the grain size. Proceeding of the 21st Workshop Rare-earth Permanent Magnets and Their Applications; Bled, Slovenia; 2010.
  • Schrefl T, Schmidts HF, Fidler J, et al. Nucleation fields and grain boundaries in hard magnetic materials. IEEE Trans Magn. 1993;29:2878–2880.
  • Sepehri-Amin H, Ohkubo T, Gruber M, et al. Micromagnetic simulations on the grain size dependence of coercivity in anisotropic Nd–Fe–B sintered magnets. Scr Mater. 2014;89:29–32.
  • Kronmüller H, Durst KD, Sagawa M. Analysis of the magnetic hardening mechanism in RE-FeB permanent magnets. J Magn Magn Mater. 1988;74:291–302.
  • Billington D, Toyoki K, Okazaki H, et al. Unmasking the interior magnetic domain structure and evolution in Nd-Fe-B sintered magnets through high-field magnetic imaging of the fractured surface. Phys Rev Mater. 2018;2:104413.
  • Park KT, Hiraga K, Sagawa M. Effect of metal coating and consecutive heat treatment on coercivity of thin Nd-Fe-B sintered magnets. Proceeding of the 16th Workshop Rare-earth Permanent Magnets and Their Applications; Sendai, Japan; 2000.
  • Nakamura H, Hirota K, Shimao M, et al. Magnetic properties of extremely small Nd-Fe-B sintered magnets. IEEE Trans Magn. 2005;41:3844–3846.
  • Hirota K, Nakamura H, Minowa T, et al. Coercivity enhancement by the grain boundary diffusion process to Nd–Fe–B sintered magnets. IEEE Trans Magn. 2006;42:2909–2911.
  • Watanabe N, Itakura M, Kuwano N, et al. Microstructure analysis of sintered Nd-Fe-B magnets improved by Tb-vapor sorption. Mater Trans. 2007;48:915–918.
  • Suzuki H, Satsu Y, Komuro M. Magnetic properties of a Nd–Fe–B sintered magnet with Dy segregation. J Appl Phys. 2009;105:07A734.
  • Li D, Suzuki S, Kawasaki T, et al. Grain interface modification and magnetic properties of Nd–Fe–B sintered magnets. Jpn J Appl Phys. 2008;47:7876–7878.
  • Samardžija Z, McGuiness P, Soderžnik M, et al. Microstructural and compositional characterization of terbium-doped Nd–Fe–B sintered magnets. Mater Charact. 2012;67:27–33.
  • Sepehri-Amin H, Ohkubo T, Hono K. The mechanism of coercivity enhancement by the grain boundary diffusion process of Nd–Fe–B sintered magnets. Acta Mater. 2013;61:1982–1990.
  • Kim TH, Sasaki TT, Ohkubo T, et al. Microstructure and coercivity of grain boundary diffusion processed Dy-free and Dy-containing Nd-Fe-B sintered magnets. Acta Mater. 2019;172:139–149.
  • Seelam UMR, Ohkubo T, Abe T, et al. Faceted shell structure in grain boundary diffusion-processed sintered Nd–Fe–B magnets. J Alloys Compd. 2014;617:884–892.
  • Kim TH, Sasaki TT, Koyama T, et al. Formation mechanism of Tb-rich shell in grain boundary diffusion processed Nd–Fe–B sintered magnets. Scr Mater. 2020;178:433–437.
  • Sepehri-Amin H, Liu J, Ohkubo T, et al. Enhancement of coercivity of hot-deformed Nd–Fe–B anisotropic magnet by low-temperature grain boundary diffusion of Nd60Dy20Cu20 eutectic alloy. Scr Mater. 2013;69:647–650.
  • Sepehri-Amin H, Ohkubo T, Nishiuchi T, et al. Coercivity enhancement of hydrogenation–disproportionation–desorption–recombination processed Nd–Fe–B powders by the diffusion of Nd–Cu eutectic alloys. Scr Mater. 2010;63:1124–1127.
  • Sepehri-Amin H, Ohkubo T, Nagashima S, et al. High-coercivity ultrafine-grained anisotropic Nd–Fe–B magnets processed by hot deformation and the Nd–Cu grain boundary diffusion process. Acta Mater. 2013;61:6622–6634.
  • Liu L, Sepehri-Amin H, Ohkubo T, et al. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process. J Alloys Compd. 2016;666:432–439.
  • Liu L, Sepehri-Amin H, Ohkubo T, et al. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process using Nd62Dy20Al18alloy. Scr Mater. 2017;129:44–47.
  • Li J, Liu L, Sepehri-Amin H, et al. Coercivity and its thermal stability of Nd-Fe-B hot-deformed magnets enhanced by the eutectic grain boundary diffusion process. Acta Mater. 2018;161:171–181.
  • Handstein A, Schneider J, Stephan D, et al. Reversal of magnetization in Nd-Fe-B magnets. Mater Lett. 1985;3:200–205.
  • Hadjipanayis GC, Kim A. Domain wall pinning versus nucleation of reversed domains in R‐Fe‐B magnets. J Appl Phys. 1988;63:3310–3315.
  • Sepehri-Amin H, Une Y, Ohkubo T, et al. Microstructure of fine-grained Nd–Fe–B sintered magnets with high coercivity. Scr Mater. 2011;65:396–399.
  • Liu J, Sepehri-Amin H, Ohkubo T, et al. Grain size dependence of coercivity of hot-deformed Nd–Fe–B anisotropic magnets. Acta Mater. 2015;82:336–343.
  • Kittel C. Physical theory of ferromagnetic domains. Rev Mod Phys. 1949;21:541–583.
  • Kronmüller H, Durst KD, Martinek G. Angular dependence of the coercive field in sintered Fe77Nd15B8 magnets. J Magn Magn Mater. 1987;69:149–157.
  • Givord D, Tenaud P, Viadieu T. Angular dependence of coercivity in sintered magnets. J Magn Magn Mater. 1988;72:247–252.
  • Givord D, Lu Q, Rossignol MF, et al. Experimental approach to coercivity analysis in hard magnetic materials. J Magn Magn Mater. 1990;83:183–188.
  • Martinek G, Kronmüller H. Influence of grain orientation of the coercive field in Fe-Nd-B permanent magnets. J Magn Magn Mater. 1990;86:177–183.
  • Cebollada F, Rossignol MF, Givord D, et al. Angular dependence of coercivity in Nd-Fe-B sintered magnets: proof that coherent rotation is not involved. Phys Rev B. 1995;52:13511–13518.
  • Stoner EC, Wohlfarth EP. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil Trans R Soc Lond A. 1948;240:599–642.
  • Bance S, Oezelt H, Schrefl T, et al. Influence of defect thickness on the angular dependence of coercivity in rare-earth permanent magnets. Appl Phys Lett. 2014;104:182408.
  • Li J, Tang X, Sepehri-Amin H, et al. Angular dependence and thermal stability of coercivity of Nd-rich Ga-doped Nd–Fe–B sintered magnet. Acta Mater. 2020;187:66–72.
  • Matsuura Y, Hoshijima J, Ishii R. Relation between Nd2Fe14B grain alignment and coercive force decrease ratio in NdFeB sintered magnets. J Magn Magn Mater. 2013;336:88–92.
  • Fujisaki J, Furuya A, Uehara Y, et al. Micromagnetic simulations of magnetization reversal in misaligned multigrain magnets with various grain boundary properties using large-scale parallel computing. IEEE Trans Magn. 2014;50:7100704.
  • Li J, Tang X, Sepehri-Amin H, et al. On the temperature-dependent coercivities of anisotropic Nd-Fe-B magnet. Acta Mater. 2020;199:288–296.
  • Li R, Zhang HR, Liu Y, et al. Temperature stability of coercivity in mischmetal-Fe-Co-B melt-spun ribbons. Mater Res Express. 2018;5:056101.
  • Thielsch J, Suess D, Schultz L, et al. Dependence of coercivity on length ratios in sub-micron Nd2Fe14B particles with rectangular prism shape. J Appl Phys. 2013;114:223909.
  • Tang X, Li J, Miyazaki Y, et al. Relationship between the thermal stability of coercivity and the aspect ratio of grains in Nd-Fe-B magnets: experimental and numerical approaches. Acta Mater. 2020;183:408–417.
  • Akiya T, Liu J, Sepehri-Amin H, et al. High-coercivity hot-deformed Nd–Fe–B permanent magnets processed by Nd–Cu eutectic diffusion under expansion constraint. Scr Mater. 2014;81:48–51.
  • Liu L, Sepehri-Amin H, Sasaki TT, et al. Coercivity enhancement of Nd-Fe-B hot-deformed magnets by the eutectic grain boundary diffusion process using Nd-Ga-Cu and Nd-Fe-Ga-Cu alloys. AIP Adv. 2018;8:056205.
  • Xia X, Liu M, Zhang T, et al. Improvement of thermal stability in hot-deformed Nd-Fe-B magnets by grain refinement. Scr Mater. 2020;178:129–133.
  • Tang X, Song SY, Li J, et al. Thermally-stable high coercivity Ce-substituted hot-deformed magnets with 20% Nd reduction. Acta Mater. 2020;190:8–15.
  • Sepehri-Amin H, Liu L, Ohkubo T, et al. Microstructure and temperature dependent of coercivity of hot-deformed Nd–Fe–B magnets diffusion processed with Pr–Cu alloy. Acta Mater. 2015;99:297–306.
  • Pathak AK, Khan M, Gschneidner KA Jr, et al. Cerium: an unlikely replacement of dysprosium in high performance Nd–Fe–B permanent magnets. Adv Mater. 2015;27:2663–2667.
  • Zhang M, Li Z, Shen B, et al. Permanent magnetic properties of rapidly quenched (La,Ce)2Fe14B nanomaterials based on LaeCe mischmetal. J Alloys Compd. 2015;651:144–148.
  • Pathak AK, Khan M, Gschneidner KA Jr, et al. Magnetic properties of bulk, and rapidly solidified nanostructured (Nd1-xCex)2Fe14-yCoyB ribbons. Acta Mater. 2016;103:211–216.
  • Peng B, Ma T, Zhang Y, et al. Improved thermal stability of Nd-Ce-Fe-B sintered magnets by Y substitution. Scr Mater. 2017;131:11–14.
  • Fan X, Chen K, Guo S, et al. Core–shell Y-substituted Nd–Ce–Fe–B sintered magnets with enhanced coercivity and good thermal stability. Appl Phys Lett. 2017;110:172405.
  • Skokov KP, Gutfleisch O. Heavy rare earth free, free rare earth and rare earth free magnets – vision and reality. Scr Mater. 2018;154:289–294.
  • Tang X, Sepehri-Amin H, Matsumoto M, et al. Role of Co on the magnetic properties of Ce-substituted Nd-Fe-B hot-deformed magnets. Acta Mater. 2019;175:1–10.
  • Herbst JF. R2Fe14B materials: intrinsic properties and technological aspects. Rev Mod Phys. 1991;63:819–898.
  • Susner MA, Conner BS, Saparov BI, et al. Flux growth and characterization of Ce-substituted Nd2Fe14B single crystals. J Magn Magn Mater. 2017;434:1–9.
  • Zhu M, Li W, Wang J, et al. Influence of Ce content on the rectangularity of demagnetization curves and magnetic properties of Re-Fe-B magnets sintered by double main phase alloy method. IEEE Trans Magn. 2014;50:1000104.
  • Fan X, Guo S, Chen K, et al. Tuning Ce distribution for high performance Nd-Ce-Fe-B sintered magnets. J Magn Magn Mater. 2016;419:394–399.
  • Fan X, Ding G, Chen K, et al. Whole process metallurgical behavior of the high-abundance rare-earth elements LRE (La, Ce and Y) and the magnetic performance of Nd0.75LRE0.25-Fe-B sintered magnets. Acta Mater. 2018;154:343–354.
  • Tang X, Sepehri-Amin H, Ohkubo T, et al. Coercivity enhancement of hot-deformed Ce-Fe-B magnets by grain boundary infiltration of Nd-Cu eutectic alloy. Acta Mater. 2018;144:884–895.
  • Available from: https://global.toyota/en/newsroom/corporate/21139684.html
  • Zhu M, Han R, Li W, et al. An enhanced coercivity for (CeNdPr)–Fe–B sintered magnet prepared by structure design. IEEE Trans Magn. 2015;51:2104604.
  • Zhang YJ, Ma T, Jin J, et al. Effects of REFe2 on microstructure and magnetic properties of Nd-Ce-Fe-B sintered magnets. Acta Mater. 2017;128:22–30.
  • Ding G, Guo S, Chen L, et al. Effects of the grain size on domain structure and thermal stability of sintered Nd-Fe-B magnets. J Alloys Compd. 2018;735:1176–1180.
  • Xu XD, Sasaki TT, Une Y, et al. Origin of the coercivity difference in Nd-Fe-B sintered magnets processed from hydrogenation-disproportionation-desorption- recombination powder and jet-milled powder. Acta Mater. 2018;151:293–300.
  • Fischer CC, Tibbetts KJ, Morgan D, et al. Predicting crystal structure by merging data mining with quantum mechanics. Nat Mater. 2006;5:641–646.
  • Curtarolo S, Hart GLW, Nardelli MB, et al. The high-throughput highway to computational materials design. Nat Mater. 2013;12:191–201.
  • Ramprasad R, Batra R, Pilania G, et al. Machine learning in materials informatics: recent applications and prospects. Npj Comput Mater. 2017;3:54.
  • Yuan R, Liu Z, Balachandran PV, et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv Mater. 2018;30:1702884.