2,987
Views
7
CrossRef citations to date
0
Altmetric
Focus on Science and Technology of Element-Strategic Permanent Magnets

Atomistic theory of thermally activated magnetization processes in Nd2Fe14B permanent magnet

ORCID Icon, ORCID Icon, ORCID Icon, , , , , & show all
Pages 658-682 | Received 20 Oct 2020, Accepted 31 May 2021, Published online: 06 Sep 2021

References

  • Sagawa M , Hirosawa S. Magnetic hardening mechanism in sintered R-Fe-B permanent magnets. J Mater Res. 1988;3:45–54.
  • Herbst JF , Croat JJ , Pinkerton FE , et al. Relationships between crystal structure and magnetic properties in Nd2Fe14B. Phys Rev. 1984;B29:4176–4187(R).
  • Hirosawa S , Matsuura Y , Yamamoto H , et al. Single crystal measurements of anisotropy constants of R2Fe14B (R=Y, Ce, Pr, Nd, Gd, Tb, Dy and Ho). J Appl Phys. 1985;24:L803–L805.
  • Andreev AV , Deryagin AV , Kudrevatykh NV , et al. Magnetic properties of Y2Fe14B and Nd2Fe14B and their hydrides. Sov Phys JETP. 1986;63:608–612.
  • Kronmüller H. Theory of nucleation fields in inhomogeneous ferromagnets. Phys Status Solidi. 1987;B144: 385–396. Kronmüller H, Durst K.D, Sagawa M. Analysis of the magnetic hardening mechanism in RE-FeB permanent magnets. J. Magn. Magn. Mater. 1988;74:291-302.
  • Herbst JF. R2Fe14B materials: intrinsic properties and technological aspects. Rev Mod Phys. 1991;63:819–898.
  • Hirosawa S , Matsuura Y , Yamamoto H , et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J Appl Phys. 1986;59:873–879.
  • Yamada O , Tokuhara H , Ono F , et al. Magnetocrystalline anisotropy in Nd2Fe14B intermetallic compound. J Magn Magn Mater. 1986;54:585–586, Yamada O, Ohtsu Y, Ono F, et al. Magnetocrystalline anisotropy in Nd2Fe14B intermetallic compound, J. Magn. Magn.Mater. 1987;70:322-324
  • Mushnikov NV , Terent’ev PB , Rosenfel’d EV . Magnetic anisotropy of the Nd2Fe14B compound and its hydride Nd2Fe14BH4. Phys Met Metall. 2007;103:39–50.
  • Kou XC , Grössinger R , Hilscher G , et al. Ac susceptibility study on R2Fe14B single crystals (R=Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm). Phys Rev B. 1996;54:6421–6429.
  • Piqué C , Burriel R , Bartolomé J . Spin reorientation phase transitions in R2Fe14B (R = Y, Nd, Ho, Er, Tm) investigated by heat capacity measurements. J Magn Magn Mater. 1996;154:71–82.
  • Zhang ZD , Kou XC , De Boer FR , et al. The spin reorientation in Nd2Fe14B in the presence of inter-grain exchange coupling. J Alloys Comp. 1998;274:274–277.
  • Chacon C , Isnard O , Miraglia S . Structural and magnetic properties of Nd2Fe14–x Si x B compounds and related hydrides. J Alloys Compd. 1999;283:320–326.
  • Miyashita S , Nishino M , Toga Y , et al. Perspectives of stochastic micromagnetism of Nd2Fe14B and computation of thermally activated reversal process. Scr Mater. 2018;154:259–265.
  • Sugimoto S . Current status and recent topics of rare-earth permanent magnets. J Phys D: Appl Phys. 2011;44:064001(1–11).
  • Hirosawa S , Nishino M , Miyashita S . Perspectives for high-performance permanent magnets: applications, coercivity, and new materials. Adv Nat Sci Nanosci Nanotechnol. 2017;8:013002(1–12).
  • Kronmüller H , Fähnle M . Micromagnetism and the microstructure of ferromagnetic solids. Cambridge: Cambridge University Press; 2003.
  • Sepehri-Amin H , Ohkubo T , Nagashima S , et al. High-coercivity ultrafine-grained anisotropic Nd-Fe-Bmagnets processed by hot deformation and the Nd-Cu grainboundary diffusion process. Accta Materialia. 2013;61:6622–6634.
  • Akiya T , Liu AJ , Sepehri-Amin H , et al. High-coercivity hot-deformed Nd-Fe-B permanent magnets processed by Nd-Cu eutectic diffusion under expansion constraint. Scr Mater. 2014;81:48–51.
  • Néel L . Théorie du traînage magnétique des ferromagnVtiques en grains fins avec application aux terres cuites. Ann Geophys. 1949;5: 99–136. Brown Jr WF. Thermal Fluctuations of a Single-Domain Particle. Phys. Rev. 1963;130:1677-1686.Kurkijarvi J. Intrinsic Fluctuations in a Superconducting Ring Closed with a Josephson Junction. Phys Rev B. 1972;6:832-835.
  • García-Palacios JL , Lázaro FJ . Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys Rev B. 1998;58:14937–14958.
  • Nishino M , Miyashita S . Realization of thermal equilibrium in inhomogeneous magnetic systems by the Landau-Lifshitz-Gilbert equation with stochastic noise, and its dynamical aspects. Phys Rev B. 2015;91(1–13):134411.
  • Toga Y , Matsumoto M , Miyashita S , et al. Monte Carlo analysis for finite-temperature magnetism of Nd2Fe14B permanent magnet. Phys Rev B. 2016;94(174433):1–9.
  • Toga Y , Nishino M , Miyashita S , et al. Anisotropy of exchange stiffness based on atomic-scale magnetic properties in the rare-earth permanent magnet Nd2Fe14B. Phys Rev B. 2018;98(1–10):054418.
  • Nishino M , Toga Y , Miyashita S , et al. Atomistic-model study of temperature-dependent domain walls in the neodymium permanent magnet Nd2Fe14B. Phys Rev B. 2017;95(1–7):094429.
  • Gong Q , Yi M , Evans RFL , et al. Calculating temperature-dependent properties of Nd2Fe14B permanent magnets by atomistic spin model simulations. Phys Rev B. 2019;99(1–11):214409.
  • Gong Q , Yi M , Xu BX . Multiscale simulations toward calculating coercivity of Nd-Fe-B permanent magnets at high temperatures. Phys Rev Mater. 2019;3(1–13):084406.
  • Gong Q , Yi M , Evans RFL , et al. Anisotropic exchange in Nd-Fe-B permanent magnets. Mater Res Lett. 2020;8:89–96.
  • Nishino M , Miyashita S . Nontrivial temperature dependence of ferromagnetic resonance frequency for spin reorientation transitions. Phys Rev B. 2019;100:020403(R)(1–5).
  • Hinokihara T , Nishino M , Toga Y , et al. Exploration of the effects of dipole-dipole interactions in Nd2Fe14B thin films based on a stochastic cutoff method with a novel efficient algorithm. Phys Rev B. 2018;97:104427(1–8) (2018).
  • Givord D , Rossignol M , Barthem VMTS . The physic of coercivity. J Magn Magn Mater. 2003;258-259:1–5.
  • Gaunt P . Magnetic viscosity and thermal activation energy. J Appl Phys. 1986;59:4129–4132.
  • Givord D , Lu Q , Rossignol MF , et al. Experimental approach to coercivity analysis in hard magnetic materials. J Magn Magn Mater. 1990;83:183–188.
  • Givord D , Lienard A , Tenaud P , et al. Magnetic viscosity in Nd-Fe-B sintered magnets. J Magn Magn Mater. 1987;67:L281–L285.
  • Bance S , Fischbacher J , Kovacs A , et al. Thermal activation in permanent magnets. JOM. 2015;67:1350–1356.
  • Fischbacher J , Kovacs A , Oezelt H , et al. On the limits of coercivity in permanent magnets. Appl Phys Lett. 2017;111:072402(1–5).
  • Fischbacher J , Kovacs A , Gusenbauer M , et al. Micromagnetics of rare-earth efficient permanent magnets. J Phys D: Appl Phys. 2018;51(1–17):193002.
  • Nishino M , Uysal IE , Hinokihara T , et al. Dynamical aspects of magnetization reversal in the neodymium permanent magnet by a stochastic Landau-Lifshitz-Gilbert simulation at finite temperature: real-time dynamics and quantitative estimation of coercive force. Phys Rev B. 2020;102:020413(R)(1–5).
  • Dittrich R , Schrefl T , Suess D , et al. A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems. J Magn Magn Mater. 2002;250:12–19, E W, Ren W, Vanden-Eijnden E. Simplified and improved string method for computing the minimum energy paths in barrier-crossing events J. Chem. Phys. 2007; 126:164103(1-8)
  • Toga Y , Miyashita S , Sakuma A , et al. Role of atomic-scale thermal fluctuations in the coercivity. npj Comput Mater. 2020;6:67 (1–7) (2020).
  • Wang F , Landau DP . Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett. 2001;86:2050–2053.
  • Okamoto S , Goto R , Kikuchi N , et al. Temperature-dependent magnetization reversal process and coercivity mechanism in Nd-Fe-B hot-deformed magnets. J Appl Phys. 2015;118:223903.
  • Suzuki M , Yasui A , Kotani Y , et al. Magnetic domain evolution in Nd-Fe-B: cu sintered magnet visualized by scanning hard X-ray microprobe. Acta Materialia. 2016;106:155–161, Kotani Y, Senba Y, Toyoki K, et al. Realization of a scanning soft X-ray microscope for magnetic imaging under high magnetic fields Jouranal of Synchrotron Radiation. 2018;25:1444-1449.Billington D, Toyoki K, Okazaki H, et al. Unmasking the interior magnetic domain structure and evolution in Nd-Fe-B sintered magnets through high-field magnetic imaging of the fractured surface. Phys. Rev. Materials. 2028; 2:104413(1-8). Suzuki M, Kim KJ, Kim S, et al. Three-dimensional visualization of magnetic domain structure with strong uniaxial anisotropy via scanning hard X-ray microtomography. Applied Physics Express. 2018;11:036601 (1-4)
  • Hinokihara T , Miyashita S . Systematic survey of magnetic configurations in multilayer ferromagnet system with dipole-dipole interaction. Phys Rev B. 2021;103:054421(1–9).
  • Sakuma A , Tanigawa S , Tokunaga M . Micromagnetic studies of inhomogeneous nucleation in hard magnets. J Magn Magn Mater. 1990;84:52–58.
  • Kronmüller H , Goll D . Micromagnetic theory of the pinning of domain walls at phase boundaries. Phys B Condens Matter. 2002;319:122–126.
  • Paul DI . General theory of the coercive force due to domain wall pinning. J Appl Phys. 1982;53:1649–1654.
  • Sakuma A . The theory of inhomogeneous nucleation in uniaxial ferromagnets. J Magn Magn Mater. 1990;88:369–375.
  • Mohakud S , Andraus S , Nishino M , et al. Temperature dependence of the threshold magnetic field for nucleation and domain wall propagation in an inhomogeneous structure with grain boundary. Phys Rev B. 2016;94:054430(1–14).
  • Westmoreland SC , Evans RFL , Hrkac G , et al. Multiscale model approaches to the design of advanced permanent magnets. Scr Mater. 2018;148:56–62.
  • Uysal IE , Nishino M , Miyashita S . Magnetic field threshold for nucleation and depinning of domain walls in the neodymium permanent magnet Nd2Fe14B. Phys Rev B. 2020;101:094421(1–9).
  • Nishino M , Uysal IE , Miyashita S . The effect of the surface magnetic anisotropy of the neodymium atoms on the coercivity in the neodymium permanent magnet. Phys Rev B. 2021;103:014418 (1–9).
  • Fujisaki J , Furuya A , Uehara Y , et al. Micromagnetic simulations of magnetization reversal in misaligned multigrain magnets with various grain boundary properties using large-scale parallel computing. IEEE Trans Magn. 2014;50:7100704(1–4).
  • Bance S , Oezelt H , Schrefl T , et al. Influence of defect thickness on the angular dependence of coercivity in rare-earth permanent magnets. Appl Phys Lett. 2014;104(182408):1–5.
  • Preisach F . Über die magnetische Nachwirkung. Z Phys. 1935;94:277–301.
  • Mayergoyz ID . Mathematical models of hysteresis. Phys Rev Lett. 1986;56: 1518–1521. Pike CR, Ross CA, Scalettar RT, et al. First-order reversal curve diagram analysis of a perpendicular nickel nanopillar array. Phys. Rev. B. 2005;71:134407 (1-12).
  • Yomogita T , Okamoto S , Kikuchi N , et al. Temperature and field direction dependences of first-order reversal curve (FORC) diagrams of hot-deformed Nd-Fe-B magnets. J Mag Mag Matt. 2018;447:110–115, Okamoto S, Miyazawa K, Yomogita T, et al. Temperature dependent magnetization reversal process of a Ga-doped Nd-Fe-B sintered magnet based on first-order reversal curve analysis. Acta Materialia. 2019;178:90-98.Miyazawa K, Okamoto S, Yomogita T, et al. First-order reversal curve analysis of a Nd-Fe-B sintered magnet with soft X-ray magnetic circular dichroism microscopy. Acta Materialia. 2019;162:1-9
  • Matau F , Nica V , Postolache P , et al. Physical study of the cucuteni pottery technology. J Archaeol Sci. 2013;40:914–925.
  • Della Torre E . Moving Preisach model. IEEE Trans Audio Electroacoust. 1966;14: 86–92. Dobrota CI, Stancu A. Mean field model for ferromagnetic nanowire arrays based on a mechanical analogy. J. Phys. Condens. Matter. 2013;25:035302(1-6).
  • Miyashita S , in preparation.
  • Freeman AJ , Watson RE . Theoretical investigation of some magnetic and spectroscopic properties of rare-earth ions. Phys Rev. 1962;127:2058–2075.
  • Miyake T , Akai H . Quantum theory of rare-earth magnets. J Phys Soc Jpn. 2018;87:041009(1–10).
  • Yamada M , Kato H , Yamamoto H , et al. Crystal-field analysis of the magnetization process in a series of Nd2Fet4B-type compounds. Phys Rev B. 1988;38:620–633.
  • Miura Y , Tsuchiura H , Yoshioka T . Magnetocrystalline anisotropy of the Fe-sublattice in Y2Fe14B systems. J Appl Phys. 2014;115:17A765(1–3).
  • Liechtenstein AI , Katsnelson MI , Antropov VP , et al. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J Magn Magn Mater. 1987;67:65–74.
  • Asselin P , Evans RFL , Barker J , et al. Constrained Monte Carlo method and calculation of the temperature dependence of magnetic anisotropy. Phys Rev B. 2010;82:054415.
  • Sasaki R , Miura D , Sakuma A . Theoretical evaluation of the temperature dependence of magnetic anisotropy constants of Nd2Fe14B: effects of exchange field and crystal field strength. Appl Phys Exp. 2015;8: 043004 (1–4). Miura D, Sasaki R, Sakuma A. Direct expressions for magnetic anisotropy constants. Appl. Phys. Exp. 2015;8:113003 (1-4).
  • Durst KD , Kronmüller H . Determination of intrinsic magnetic material parameters of Nd2Fe14B from magnetic measurements of sintered Nd15Fe77B8 magnets. J Magn Magn Mater. 1986;59:86–94.
  • Meo A , Chepulskyy R , Apalkov D , et al. Atomistic investigation of the temperature and size dependence of the energy barrier of CoFeB/MgO nanodots. J Appl Phys. 2020;128(73905):1–8.
  • Nishino M , Uysal IE , Hinokihara T . Miyashita S Finite-temperature dynamical and static properties of Nd magnets studied by an atomistic modeling. AIP Adv. 2021;11(25102):1–7.
  • Zhu Y , McCartney MR . Magnetic-domain structure of Nd2Fe14B permanent magnets. J Appl Phys. 1998;84: 3267–3272. Lloyd SJ, Loudon JC, Midgley PA. Measurement of magnetic domain wall width using energy-filtered Fresnel images. Journal of Microscopy. 2002;207:118-128.Beleggia M, Schofield MA, Zhu Y, et al. Quantitative domain wall width measurement with coherent electrons. J. Magn. Magn. Mater. 2007;310:2696-2698.
  • Chikazumi S . Physics of ferromagnetism, international series of monographs on physics. Oxford, New York: Oxford University Press; 1997.
  • Hinzke D , Nowak U , Chantrell RW , et al. Orientation and temperature dependence of domain wall properties in FePt. Appl Phys Lett. 2007;90(82507):1–3.
  • Naser H , Rado C , Lapertot G , et al. Anisotropy and temperature dependence of the spin-wave stiffness in Nd2Fe14B: an inelastic neutron scattering investigation. Phys Rev B. 2020;102:014443.
  • Toga Y , Doi S . unpublished. 2019.
  • Fukazawa T , Akai H , Hirashima Y , et al. First-principles study of spin-wave dispersion in Sm(Fe1–x Co x )12 . J Mag Mag Mat. 2019;469:296–301.
  • Fort GW , Lewis JT , O’Connell RF . Quantum Langevin equation. Phys Rev A. 1988;37:4419–4428.
  • Kubo R , Tomita K , General A . Theory of magnetic resonance absorption. J Phys Soc Jpn. 1954;9: 888–919. Kubo R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 1957; 12:570-586.Miyashita S, Yoshino T, Ogasahara A. Direct Calculation of Dynamical Susceptibility in Strongly Fluctuating Quantum Spin Systems. J. Phys. Soc. Jpn. 1999; 68:655-661.Ikeuchi H, De Raedt H, Bertaina S, et al. Size and temperature dependence of the line shape of ESR spectra of the XXZ antiferromagnetic chain. Phys. Rev. B. 2017;95:024402 (1-10).
  • Stoner EC , Wohlfarth EP . A mechanism of magnetic hysteresis in hererogeneous alloys. Phil Trans R Soc A. 1948;240:599–642.
  • Rikvold PA , Tomita H , Miyashita S , et al. Metastable lifetimes in a kinetic Ising model: dependence on field and system size. Phys Rev E. 1994;49:5080–5090.
  • Hirosawa S , Tokuhara K , Matsuura , et al. The dependence of coercivity on anisotropy field in sintered R-Fe-B permanent magnets. J Magn Magn Mater. 1986;61:363–369.
  • Grönefeld M , Kronmüller H . Calculation of strayfields near grain edges in permanent magnet material. J Magn Magn Mater. 1989;80:223–228.
  • Appel AW . An efficient program for many-body simulation. SIAM J Sci Stat Comput. 1985;6: 85–103. Barnes J, Hut P. A hierarchical O(N log N) force-calculation algorithm. Nature (London) 1986;324:446-449.Carrier J, Greengard L, Rokhlin V. A Fast Adaptive Multipole Algorithm for Particle Simulations. SIAM J. Sci. Stat. Comput. 1988;9:669-686.Makino J. Vectorization of a Treecode. J. Comput. Phys. 1990;87:148-160. Darden T, York D, Pedersen L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089-10092.Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method, J. Chem. Phys. 1995;103:8577-8593.Luijten E, Blöte HW. Monte Carlo method for spin models with long-range interactios. Int. J. Mod. Phys. C. 1995;06:359-370.Hinzke D, Nowak U. Magnetization switching in nanowires: Monte Carlo study with fast Fourier transformation for dipolar fields. J. Magn. Magn. Mater.2000;221:365-372.
  • Mak CH . Stochastic potential switching algorithm for Monte Carlo simulations of complex systems. J Chem Phys. 2005;122: 214110(1–6). Sasaki M, Matsubara F. Stochastic Cutoff Method for Long-Range Interacting Systems. J. Phys. Soc. Jpn. 2008;77:024004(1-5). Sasaki M. Reformulation of the stochastic potential switching algorithm and a generalized Fourtuin-Kasteleyn representation. Phys. Rev. E. 2010;82:031118(1-10).
  • Fukui K , Todo S . Order-N cluster Monte Carlo method for spin systems with long-range interactions. J Comput Phys. 2009;228:2629–2642.
  • Bance S , Seebacher B , Schrefl T , et al. Grain-size dependent demagnetizing factors in permanent magnets. J Appl Phys. 2014;116(233903):1–7.
  • Ramesh R , Thomas G , Ma BM . Magnetization reversal in nucleation controlled magnets. II. Effect of grain size and size distribution on intrinsic coercivity of Fe-Nd-B magnets. J Appl Phys. 1988;64:6416–6423.
  • Uestuener K , Katter M , Rodewald W . Dependence of the mean grain size and coercivity of sintered Nd-Fe-B magnets on the initial powder particle size. IEEE Trans Magn. 2000;42:2897–2899.
  • Fukada T , Matsuura M , Goto R , et al. Evaluation of the microstructural contribution to the coercivity of fine-grained Nd2Fe14B sintered magnets. Mater Trans. 2012;53(2012):1967–1971.
  • Westmoreland SC , Skelland C , Shoji T , et al. Atomistic simulations of 14-Fe/Nd2Fe14B magnetic core/shell nanocomposites with enhanced energy product for high temperature permanent magnet applications. J Appl Phys. 2020;127:133901(1–7).
  • Friedberg R , Paul DI . New theory of coercivity of ferromagnetic materials. Phys Rev Lett. 1975;34:1234–1237.
  • Wysocki AL , Antropov VP . Micromagnetic simulations with periodic boundary conditions: hard-soft nanocomposites. J Magn Magn Mater. 2017;428:274–286.
  • Pramanik T , Roy A , Dey R , et al. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy. J Magn Magn Mater. 2017;437:72–77.
  • Feng Y , Liu J , Klein T , et al. Localized detection of reversal nucleation generated by high moment magnetic nanoparticles using a large-area magnetic sensor. J Appl Phys. 2017;122(123901):1–8.
  • Nakamura T , Yasui A , Kotani Y , et al. Direct observation of ferromagnetism in grain boundary phase of Nd-Fe-B sintered magnet using soft x-ray magnetic circular dichroism. Appl Phys Lett. 2014;105(202404):1–4.
  • Mitsumata C , Tsuchiura H , Sakuma A . Model calculation of magnetization reversal process of hard magnet in Nd2Fe14B system. Appl Phys Express. 2011;4(113002):1–3.
  • Moriya H , Tsuchiura H , Sakuma A . First principles calculation of crystal field parameter near surfaces of Nd2Fe14B. J Appl Phys. 2009;105:07A740 (1–3).
  • Tanaka S , Moriya H , Tsuchiura H , et al. First-principles study on the local magnetic anisotropy near surfaces of Dy2Fe14B and Nd2Fe14B magnets. J Appl Phys. 2011;109( 07A702):1–3.
  • Toga Y , Suzuki T , Sakuma A . Effects of trace elements on the crystal field parameters of Nd ions at the surface of Nd2Fe14B grains. J Appl Phys. 2015;117:223905 (1–6).
  • Nakamura H , Hirota K , Shimao M , et al. Magnetic properties of extremely small Nd-Fe-B sintered magnets. IEEE Trans Mag. 2005;41:3844, Hirota K, Nakamura H, Minowa T, et al. Coercivity Enhancement by the Grain Boundary Diffusion Process to Nd-Fe-B Sintered Magnets. IEEE Trans. Magn. 2006;42:2909-2911
  • Hirosawa S , Tokuhara K , Sagawa M . Coercivity of surface grains of Nd-Fe-B sintered magnet. Jpn J Appl Phys. 1987;26:L1359–1361.
  • Fukasawa T , Hirosawa S . Coercivity generation of surface Nd2Fe14B grains and mechanism of fcc-phase formation at the Nd/Nd2Fe14B interface in Nd-sputtered Nd?Fe?B sintered magnets. J Appl Phys. 2008;104:013911(1–6).
  • Nishino M , Miyashita S in preparation.
  • Yomogita T , Kikuchi N , Okamoto S , et al. Detection of elemental magnetization reversal events in a micro-patterned Nd-Fe-B hot-deformed magnet. AIP Adv. 2019;9:125052(1–4), Yomogita T, Okamoto S, Kikuchi N, et al., Direct detection and stochastic analysis on thermally activated domain-wall depinning events in micropatterned Nd-Fe-B hot-deformed magnets. Acta Mater. 2020. to be published
  • Lui J , Seperi-Amin H , Ohkubo T , et al. Effect of Nd content on the microstructure and coercivity of hot-deformed Nd-Fe-B permanent magnets. Acta Mater. 2013;61:5387–5399.
  • Li J , Tang X , Seperi-Amin H , et al. On the temperature-dependent coercivities of anisotropic Nd-Fe-B magnet. Acta Materialia. 2020;199:288–296.
  • Tsuji N , Okazaki H , Ueno W , et al. Temperature dependence of the crystal structures and phase fractions of secondary phases in a Nd-Fe-B sintered magnet. Acta Mater. 2018;154:25–32.
  • Gohda Y . First-principles determination of intergranular atomic arrangements and magnetic properties in rare-earth permanent magnets. Sci Technol Adv Mater. 2021;22(1):113–123.
  • Hinokihara T , Okuyama Y , Sasaki M , et al. Time quantified monte carlo method for long-range interacting systems. arXiv:1811.00237.
  • AkaiKKR(Machikaneyama). http://kkr.issp.u-tokyo.ac.jp.