1,790
Views
2
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Overcoming intra-molecular repulsions in PEDTT by sulphate counter-ion

ORCID Icon, , , , , , , & show all
Pages 985-997 | Received 13 Apr 2021, Accepted 18 Jul 2021, Published online: 23 Dec 2021

References

  • Kaltenbrunner M, Adam G, Głowacki ED, et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat Mater. 2015;14:1032–1039.
  • Meiss J, Uhrich CL, Fehse K, et al. Transparent electrode materials for solar cells in SPIE. A. Gombert, Ed. 2008. p. 700210.
  • Admassie S, Zhang F, Manoj AG, et al. A polymer photodiode using vapour-phase polymerized PEDOT as an anode. Sol Energy Mater Sol Cells. 2006;90:133–141.
  • Lee S, Paine DC, Gleason KK. Heavily Doped poly(3,4-ethylenedioxythiophene) Thin Films with High Carrier Mobility Deposited Using Oxidative CVD: conductivity Stability and Carrier Transport. Adv Funct Mater. 2014;24:7187–7196.
  • Stavrinidou E, Gabrielsson R, Gomez E, et al. Electronic plants. Sci Adv. 2015;1:e1501136.
  • Wang JC, Ubhra Karmakar RS, Lu YJ, et al. Characterization of piezoresistive PEDOT:PSS pressure sensors with inter-digitated and cross-point electrode structures. Sensors (Basel, Switzerland). 2015;15:2233–2236.
  • Okuzaki H, Suzuki H, Ito T. Electrically driven PEDOT/PSS actuators. Synth Met. 2009;159:2233–2236.
  • Bae EJ, Kang YH, Jang K-S, et al. Enhancement of Thermoelectric Properties of PEDOT : PSS and Tellurium-PEDOT : PSS Hybrid Composites by Simple Chemical Treatment. Sci. Rep. 2016;6:18805.
  • Heydari GM, Wan CT, Ashraf Gandomi Y, et al. Ultrathin Conformal oCVD PEDOT Coatings on Carbon Electrodes Enable Improved Performance of Redox Flow Batteries. Adv Mater Interfaces. 2020;7:2000855.
  • Worfolk BJ, Andrews SC, Park S, et al., Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proceedings of the National Academy of Sciences. 2015;112:14138–14143.
  • Wang X, Zhang X, Sun L, et al. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Sci Adv. 2018;4:1–10.
  • Gueye MN, Carella A, Massonnet N, et al. Structure and Dopant Engineering in PEDOT Thin Films: practical Tools for a Dramatic Conductivity Enhancement. Chem Mater. 2016;28:3462–3468.
  • Cho B, Park KS, Baek J, et al. Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh conductivity. Nano Lett. 2014;14:3321–3327.
  • Mooij JH. Electrical conduction in concentrated disordered transition metal alloys. Phys Status Solidi A. 1973;17:521–530.
  • Bubnova O, Khan ZU, Wang H, et al. Semi-metallic polymers. Nat Mater. 2013;13:190–194.
  • Rosenbaum TF, Milligan RF, Thomas GA, et al. Low-Temperature Magnetoresistance of a Disordered Metal. Phys Rev Lett. 1981;47:1758–1761.
  • Massonnet N, Carella A, de Geyer A, et al. Metallic behaviour of acid doped highly conductive polymers. Chem Sci. 2015;6:412–417.
  • Ugur A, Katmis F, Li M, et al. Low-Dimensional Conduction Mechanisms in Highly Conductive and Transparent Conjugated Polymers. Adv Mater. 2015;27:4604–4610.
  • Stadler P, Farka D, Coskun H, et al. Local order drives the metallic state in PEDOT:PSS. J Mater Chem C. 2016;4:6982–6987.
  • Farka D, Coskun H, Bauer P, et al. Increase in electron scattering length in PEDOT:PSS by a triflic acid post-processing. Monat fur Chemie. 2017;148:871–877.
  • Farka D, Jones AOF, Menon R, et al. Metallic conductivity beyond the Mott minimum in PEDOT: sulphate at low temperatures. Synth Met. 2018;240:59–66.
  • Roncali J. Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems. Chem Rev. 1997;97:173–206.
  • Roncali J. Molecular engineering of the band gap of pi-conjugated systems: facing technological applications. Macromol Rapid Commun. 2007;28:1761–1775.
  • Fornari RP, Blom PWM, Troisi A. How Many Parameters Actually Affect the Mobility of Conjugated Polymers? Phys Rev Lett. 2017;118:86601.
  • Dongmin Kang S, Jeffrey Snyder G. Charge-transport model for conducting polymers. Nat Mater. 2016;1:1–7.
  • Kang K, Watanabe S, Broch K, et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat Mater. 2016;15:896–902.
  • Nayak PK, Garcia-Belmonte G, Kahn A, et al. Photovoltaic efficiency limits and material disorder. Energy Environ Sci. 2012;5:6022.
  • Gueye MN, Carella A, Faure-Vincent J, et al. Progress in understanding structure and transport properties of PEDOT-based materials: a critical review. Pro Mater Sci. 2020;108:100616.
  • Wang H, Ail U, Gabrielsson R, Berggren M, t al. Ionic Seebeck effect in conducting polymers. Adv Energy Mater. 2015;5:1500044.
  • Yano H, Kudo K, Marumo K, et al. Fully soluble self-doped poly(3,4-ethylenedioxythiophene) with an electrical conductivity greater than 1000 S cm −1. Sci Adv. 2019;5:eaav9492.
  • Wang C, Schindler JL, Kannewurf CR, et al. Poly(3,4-ethylenedithiathiophene). A New Soluble Conductive Polythiophene Derivative. Chem Mater. 1995;7:58–68.
  • Farka D, Coskun H, Gasiorowski, et al. Anderson-Localization and the Mott-Ioffe-Regel Limit in Glassy-Metallic PEDOT. AEM. 2017;3:1700050.
  • Perepichka IF, Levillain E, Roncali J. Effect of substitution of 3,4-ethylenedioxythiophene (EDOT) on the electronic properties of the derived electrogenerated low band gap conjugated polymersElectronic supplementary information (ESI). J Mater Chem. 2004;14:1679. Available from: http://www.rsc.org/suppdata/jm/b4/b403818e/
  • Turbiez M, Frère P, Allain M, et al. Effect of Structural Factor on the Electropolymerization of Bithiophenic Precursors Containing a 3,4-Ethylenedisulfanylthiophene Unit. Macromolecules. 2005;38:6806–6812.
  • Blanchard P, Cappon A, Levillain E, et al. Thieno[3,4-b]-1,4-oxathiane: thieno[3,4-b]-1,4-oxathiane:  an Unsymmetrical Sulfur Analogue of 3,4-Ethylenedioxythiophene (EDOT) as a Building Block for Linear π-Conjugated Systems. Org Lett. 2002;4:607–609.
  • Blanco R, Seoane C, Segura JL. Functionalized 3,4-ethylenedithiathiophenes (EDTTs) as building blocks for poly (3,4-ethylenedithiathiophene) (PEDTT) derivatives. Tetrahedron Lett. 2008;49:2056–2059.
  • Chen S, Lu B, Duan X, et al. Systematic study on chemical oxidative and solid-state polymerization of poly(3,4-ethylenedithiathiophene). J Polym Sci Part A. 2012;50:1967–1978.
  • Antonijević IS, Janjić GV, Milčić MK, et al. Preferred Geometries and Energies of Sulfur–Sulfur Interactions in Crystal Structures. Cryst Growth Des. 2016;16:632–639.
  • Vegiraju S, Chang B-C, Priyanka P, et al. Intramolecular Locked Dithioalkylbithiophene-Based Semiconductors for High-Performance Organic Field-Effect Transistors. Adv Mater. 2017;29:1702414.
  • Conboy G, Spencer HJ, Angioni E, et al. To bend or not to bend – are heteroatom interactions within conjugated molecules effective in dictating conformation and planarity? Mater Horiz. 2016;3:333–339.
  • Genz O, Lohrengel MM. Potentiostatic pulse measurements at conducting polymers. Mater Sci Forum. 1995;191:207–212.
  • Lohrengel MM, Genz O. Mechanism of the redox process of conducting polymers. Ionics. 1995;1:304–310.
  • Sniechowski M, Kozik TA, Luzny W. Dopant ions size impact on structural properties of ordered poly(3,4-ethylenedioxythiophene) systems. Polimery. 2020;65:639–645.
  • Coclite AM, Howden RM, Borrelli DC, et al. 25th Anniversary Article : CVD Polymers : a New Paradigm for Surface Modifi cation and Device Fabrication. Adv Mater. 2013;25:5392–5423.
  • Lee S, Gleason KK. Enhanced Optical Property with Tunable Band Gap of Cross-linked PEDOT Copolymers via Oxidative Chemical Vapor Deposition. Adv Funct Mater. 2015;25:85–93.
  • Brooke R, Franco-Gonzalez JF, Wijeratne K, et al. Vapor phase synthesized poly(3,4-ethylenedioxythiophene)-trifluoromethanesulfonate as a transparent conductor material. J Mater Chem A. 2018;6:21304–21312.
  • Rudd S, Murphy PJ, Evans DR. Diffusion controlled vapour deposition of mixed doped PEDOT. Synth Met. 2018;242:61–66.
  • John R. Rumble. CRC Handbook of Chemistry and Physics. Section 5: Thermochemistry, Kinetics, Electrochemistry, and Solutionchemistry (Taylor & Francis Group).
  • Ashcroft, Neil and Mermin, N. David. Solid State Physics (Philadelphia: Saunders College Publishing). 1976.
  • Kang ET, Neoh KG, Tan KL. Surface Modifications of Poly(3-Alkylthiophene) Films by Graft Copolymerization. Macromolecules. 1992;25:6842–6848.
  • Beamson G, Briggs, D. The XPS of Polymers Database. Spectra, Surface Ltd., POLY(ETHYLENE SULPHIDE)_PETHS; 2000.
  • Massonnet N, Carella A, de Geyer A, et al. Metallic behaviour of acid doped highly conductive polymers. Chem Sci. 2015;6:412–417.
  • Periasamy A, Muruganand S, Palaniswamy M. Vibrational studies of Na2SO4, K2SO4, NaHSO4 and KHSO4 crystals. Rasayan J Chem. 2009;2:981–989.
  • Cravino A, Neugebauer H, Petr A, et al. Spectroelectrochemistry of poly(ethylenedithiathio-phene)-the sulfur analogue of poly(ethylenedioxythiophene). J Phys Chem B. 2006;110:2662–2667.
  • Horii T, Li Y, Mori Y, et al. Correlation between the hierarchical structure and electrical conductivity of PEDOT/PSS. Polym J. 2015;47:695–699.
  • Zabrodskii AG, Zinov’eva KN. Low-temperature conductivity and metal-insulator transition in compensate n-Ge. Zh Eksp Teor Fiz. 1984;86:727–742.
  • Heeger AJ, Sariciftci NS, Namdas EB. Semiconducting and Metallic Polymers. Oxford Uni Press. 2011;21:391–393.
  • Dai P, Zhang Y, Sarachik MP. Electrical conductivity of metallic Si: b near the metal-insulator transition. 11.
  • Kaiser AB. Electronic transport properties of conducting polymers. Rep Prog Phys. 2001;64:1–49.
  • Bergmann G. Physical interpretation of weak localization: a time-of-flight experiment with conduction electrons. Phys Rev B. 1983;28:2914–2920.
  • Bergmann G. Localization in thin films — a time-of-flight-experiment with conduction electrons. Physica B+C. 1984;126:229–234.
  • Ahlskog M, Reghu M, Heeger AJ, et al. Electronic transport in the metallic state of oriented poly(p-phenylenevinylene). Phys Rev B. 1996;53:15529–15537.
  • Miller JS, Epstein AJ. Organic and Organometallic Molecular Magnetic Materials: designer Magnets. Angew Chem Int Ed Engl. 1994;33:385–415.
  • Miller JS. Organic- and molecule-based magnets. Mater Today. 2014;17:224–235.
  • Noriega R, Rivnay J, Vandewal K, et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater. 2013;12:1038–1044.
  • Vegiraju S, et al. Intramolecular Locked Dithioalkylbithiophene-Based Semiconductors for High-Performance Organic Field-Effect Transistors. Adv Mater. 2017;1702414:1–8.
  • Roduner E. Bulk and Interfaces. In: Nanoscopic Materials Size-Dependent Phenomena. 2006. p. 11–20.
  • Menon R. Conductivity and magnetoconductance in iodine-doped polyacetylene. Synth Met. 1996;80:223–229.