11,745
Views
35
CrossRef citations to date
0
Altmetric
Focus on Composite Materials for Functional Electronic Devices

Self-assisted wound healing using piezoelectric and triboelectric nanogenerators

, , , , , ORCID Icon, , , & ORCID Icon show all
Pages 1-16 | Received 08 Sep 2021, Accepted 02 Dec 2021, Published online: 07 Jan 2022

References

  • Pollard BD. Principles of Instrumental Analysis (Skoog, D. A.; West, D. M.). Journal of Chemical Education. 1981 Oct 1;58 (10):A314 .
  • Topolov VY, Bowen CR, Bisegna P. New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sensors Actuators a-Phys. 2015;229:93–104.
  • Mohammadi MM. A comparison between quartz and PZT ceramic for sensoric applications. Res Desk. 2015;2(4):321–325.
  • Kim D, Hong S, Hong J, et al. Fabrication of vertically aligned ferroelectric polyvinylidene fluoride mesoscale rod arrays. J Appl Polym Sci. 2013;130(6):3842–3848.
  • Ramadan KS, Sameoto D, Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct. 2014;23(3):033001.
  • Choi YY, Tong S, Ducharme S, et al. Charge collection kinetics on ferroelectric polymer surface using charge gradient microscopy. Sci Rep. 2016 May 3;6:25087.
  • Cheng KC, Chan HL, Choy CL, et al. Single crystal PMN-0.33PT/epoxy 1-3 composites for ultrasonic transducer applications. IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Sep;50(9):1177–1183.
  • Choi YY, Yun TG, Qaiser N, et al. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays. Sci Rep. 2015 Jun 4;5:10728.
  • Setter N, Damjanovic D, Eng L, et al. Ferroelectric thin films: review of materials, properties, and applications. J Appl Phys. 2006;100(5):051606.
  • Telega JJ, Wojnar R. Piezoelectric effects in biological tissues. J Theor Appl Mech. 2002;40(3):723–759.
  • Fukada E. Piezoelectric properties of organic polymers. Ann N Y Acad Sci. 1974;238(1):7–25.
  • Fukada E. Piezoelectricity of natural biomaterials. Ferroelectrics. 1984;60(1):285–296.
  • Fukada E, Hara K. Piezoelectric effect in blood vessel walls. J Phys Soc Jpn. 1969;26(3):777–780.
  • Long Y, Wei H, Li J, et al. Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano. 2018 Dec 26;12(12):12533–12540.
  • Avishai E, Yeghiazaryan K, Golubnitschaja O. Impaired wound healing: facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine. EPMA J. 2017 Mar;8(1):23–33.
  • Guo S, Dipietro, LA. Factors affecting wound healing . J Dent Res 89 (03) . 2010 219–229 .
  • Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater. 2020 Feb;32(5):e1902549.
  • Kao FC, Chiu PY, Tsai TT, et al. The application of nanogenerators and piezoelectricity in osteogenesis. Sci Technol Adv Mater. 2019;20(1):1103–1117.
  • Hunt TK, Hopf H, Hussain Z. Physiology of wound healing. Adv Skin Wound Care. 2000 May-Jun;13(2 Suppl):6–11.
  • Broughton G 2nd, Janis JE, Attinger CE. Wound healing: an overview. Plast Reconstr Surg. 2006 Jun;117(7Suppl):1e-S-32e-S.
  • Vanwijck R. Surgical biology of wound healing. Bull Mem Acad R Med Belg. 2001;156(3–4):175–84; discussion 185.
  • Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol. 2003;58:1–26.
  • Reid B, Zhao M. The electrical response to injury: molecular mechanisms and wound healing. Adv Wound Care (New Rochelle). 2014 Feb 1;3(2):184–201.
  • Song B, Gu Y, Pu J, et al. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat Protoc. 2007;2(6):1479–1489.
  • Dube J, Rochette-Drouin O, Levesque P, et al. Restoration of the transepithelial potential within tissue-engineered human skin in vitro and during the wound healing process in vivo. Tissue Eng Part A. 2010 Oct;16(10):3055–3063.
  • Murphy PS, Evans GR. Advances in wound healing: a review of current wound healing products. Plast Surg Int. 2012;2012:190436.
  • Ud-Din S, Bayat A. Electrical stimulation and cutaneous wound healing: a review of clinical evidence. Healthcare (Basel). 2014 Oct 27;2(4):445–467.
  • Trollinger DR, Isseroff RR, Nuccitelli R. Calcium channel blockers inhibit galvanotaxis in human keratinocytes. J Cell Physiol. 2002 Oct;193(1):1–9.
  • Eck JC, Humphreys SC, Lim TH, et al. Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine (Phila Pa 1976). 2002 Nov 15;27(22):2431–2434.
  • Zhao M, Song B, Pu J, et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature. 2006 Jul 27;442(7101):457–460.
  • Bhang SH, Jang WS, Han J, et al. Zinc oxide nanorod-based piezoelectric dermal patch for wound healing. Advanced Functional Materials. 2017;27(1 1603497).
  • Wolcott LE, Wheeler PC, Hardwicke HM, et al. Accelerated healing of skin ulcer by electrotherapy: preliminary clinical results. South Med J. 1969 Jul;62(7):795–801.
  • Vodovnik L, Karba R. Treatment of chronic wounds by means of electric and electromagnetic fields. Part 1. Literature review. Med Biol Eng Comput. 1992 May;30(3):257–266.
  • Thakral G, Lafontaine J, Najafi B, et al. Electrical stimulation to accelerate wound healing. Diabet Foot Ankle. 2013 Sep 16;4:22081.
  • Gentzkow GD. Electrical stimulation to heal dermal wounds. J Dermatol Surg Oncol. 1993 Aug;19(8):753–758.
  • Alvarez OM, Mertz PM, Smerbeck RV, et al. The healing of superficial skin wounds is stimulated by external electrical current. J Invest Dermatol. 1983 Aug;81(2):144–148.
  • Goldman R, Pollack S. Electric fields and proliferation in a chronic wound model. Bioelectromagnetics. 1996;17(6):450–457.
  • Lin F, Baldessari F, Gyenge CC, et al. Lymphocyte electrotaxis in vitro and in vivo. J Immunol. 2008 Aug 15;181(4):2465–2471.
  • Sosa IJ, Reyes O, Kuffler DP. Elimination of a pressure ulcer with electrical stimulation–a case study. P R Health Sci J. 2008 Jun;27(2):175–179.
  • Kubes P. The complexities of leukocyte recruitment. Semin Immunol. 2002 Apr;14(2):65–72.
  • Robinson KR, Messerli MA. Left/right, up/down: the role of endogenous electrical fields as directional signals in development, repair and invasion. Bioessays. 2003 Aug;25(8):759–766.
  • Mycielska ME, Djamgoz MB. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci. 2004 Apr 1;117(Pt9):1631–1639.
  • McCaig CD, Rajnicek AM, Song B, et al. Controlling cell behavior electrically: current views and future potential. Physiol Rev. 2005 Jul;85(3):943–978.
  • Sheridan DM, Isseroff RR, Nuccitelli R. Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on extracellular matrix molecules. J Invest Dermatol. 1996 Apr;106(4):642–646.
  • Zhao M, Dick A, Forrester JV, et al. Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol Biol Cell. 1999 Apr;10(4):1259–1276.
  • Chang PC, Sulik GI, Soong HK, et al. Galvanotropic and galvanotaxic responses of corneal endothelial cells. J Formos Med Assoc. 1996 Aug;95(8):623–627.
  • Zhao M, Bai H, Wang E, et al. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J Cell Sci. 2004 Jan 26;117(Pt 3):397–405.
  • Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002 May;3(5):349–363.
  • Otter M, Shoenung J, Williams WS. Evidence for different sources of stress-generated potentials in wet and dry bone. J Orthop Res. 1985;3(3):321–324.
  • Minary-Jolandan M, Yu MF. Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. ACS Nano. 2009 Jul 28;3(7):1859–1863.
  • Yucel T, Cebe P, Kaplan DL. Structural origins of silk piezoelectricity. Adv Funct Mater. 2011 Feb 22;21(4):779–785.
  • Ghosh SK, Manda D. High-performance bio-piezoelectric nanogenerator made with fish scale. Appl Phys Lett. 2016;109:103701.
  • Liu H, Zhong J, Lee C, et al. A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl Phys Rev. 2018;5(4):041301.
  • Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys. 1998;61(9):1267–1324.
  • Ganeshkumar R, Somnath S, Cheah CW, et al. Decoding apparent ferroelectricity in perovskite nanofibers. ACS Appl Mater Interfaces. 2017 Dec 6;9(48):42131–42138.
  • Sappati KK, Bhadra S. Piezoelectric polymer and paper substrates: a review. Sensors (Basel). 2018 Oct 24;18(11):3605.
  • Uchino K. Piezoelectro composites. In: Comprehensive Composite Materials: Elsevier. 2000; 523–532.
  • Guo S, Duan X, Xie M, et al. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: a review. Micromachines. 2020 Dec 3;11(12 1076).
  • Park KI, Xu S, Liu Y, et al. Piezoelectric BaTiO(3) thin film nanogenerator on plastic substrates. Nano Lett. 2010 Dec 8;10(12):4939–4943.
  • Qi Y, McAlpine MC. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ Sci. 2010;3(9):1275–1285.
  • Lolla D, Lolla M, Abutaleb A, et al. Fabrication, polarization of electrospun polyvinylidene fluoride electret fibers and effect on capturing nanoscale solid aerosols. Materials (Basel). 2016 Aug 9;9(8):671.
  • T A, G C, Y-S L. inventorsSystem and method for a piezoelectric scaffold for nerve growth and repair2016a.
  • Minary-Jolandan M, Yu MF. Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity. Nanotechnology. 2009 Feb 25;20(8):085706.
  • Rajabi AH, Jaffe M, Arinzeh TL. Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 2015 Sep;24:12–23.
  • Erbulut DU, Zafarparandeh I, Lazoglu I, et al. Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability. Med Eng Phys. 2014 Jul;36(7):915–921.
  • Menéndez-Manjón A, Moldenhauer K, Wagener P, et al. Nano-energy research trends: bibliometrical analysis of nanotechnology research in the energy sector. J Nanopart Res. 2011;13:3911–3922.
  • Zheng Q, Shi B, Li Z, et al. Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv Sci (Weinh). 2017 Jul;4(7):1700029.
  • Wang ZL. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano. 2013 Nov 26;7(11):9533–9557.
  • Briscoe J, Dunn S. Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters. Nano Energy. 2015;14:15–29.
  • Fan FR, Tang W, Wang ZL. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater. 2016 Jun;28(22):4283–4305.
  • Lin L, Wang S, Xie Y, et al. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 2013;13(6):2916–2923.
  • Ma Y, Zheng Q, Liu Y, et al. Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett. 2016 Oct 12;16(10):6042–6051.
  • Song P, Kuang S, Panwar N, et al. A self‐powered implantable drug‐delivery system using biokinetic energy. Adv Funct Mater. 2017;29:1605668.
  • Hwang GT, Park H, Lee JH, et al. Self‐powered cardiac pacemaker enabled by flexible single crystalline PMN‐PT piezoelectric energy harvester. Adv Funct Mater. 2014;26:4880.
  • Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006;312(5771):242.
  • Bhang SH, Jang WS, Han J, et al. Zinc oxide nanorod-based piezoelectric dermal patch for wound healing. Adv Funct Mater. 2017;27(1):1603497.
  • Fang J, Niu H, Wang H, et al. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre web. Energy Environ Sci. 2013;6(7):2196–2202.
  • Wang Z, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science (New York, NY). 2006 May 01;312:242–246.
  • Cui J. Zinc oxide nanowires. Mater Charact. 2012 Feb 01;64:43–52.
  • Dudem B, Kim DH, Bharat LK, et al. Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting. Appl Energy. 2018 Nov 15;230:865–874.
  • Kim SK, Bhatia R, Kim T-H, et al. Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy. 2016;22:483–489.
  • Zhu G, Pan C, Guo W, et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012 Sep 12;12(9):4960–4965.
  • Wu C, Wang AC, Ding W, et al. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater. 2019;9(1):1802906.
  • Khan U, Hinchet R, Ryu H, et al. Research update: nanogenerators for self-powered autonomous wireless sensors. APL Mater. 2017;5(7):073803.
  • Wang A, Liu Z, Hu M, et al. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy. 2018;43:63–71.
  • Wang A, Hu M, Zhou L, et al. Self-Powered Well-Aligned P(VDF-TrFE) Piezoelectric Nanofiber Nanogenerator for Modulating an Exact Electrical Stimulation and Enhancing the Proliferation of Preosteoblasts. Nanomaterials (Basel). 2019 Mar 3;9(3 349).
  • Du S, Zhou N, Gao Y, et al. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Res. 2020;13:2525–2533.
  • Sydlik SA, Jhunjhunwala S, Webber MJ, et al. In vivo compatibility of graphene oxide with differing oxidation states. ACS Nano. 2015;9(4):3866–3874.
  • Assimacopoulous D. Wound healing promotion by the use of negative electric current. Plast Reconstr Surg. 1970;45(1):103.
  • Augustine R, Dan P, Sosnik A, et al. Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Res. 2017 Oct 01;10(10):3358–3376.
  • Carpi F, Kornbluh R, Sommer-Larsen P, et al. Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinspir Biomim. 2011 Dec;6(4):045006.
  • Guo HF, Li ZS, Dong SW, et al. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Colloids Surf B Biointerfaces. 2012 Aug 1;96:29–36.
  • Melling AC, Leaper DJ. The impact of warming on pain and wound healing after hernia surgery: a preliminary study. J Wound Care. 2006 Mar 01;15(3):104–108.
  • Kim K, Kuang S, Song Q, et al. Impact of heat therapy on recovery after eccentric exercise in humans. J Appl Physiol. 2019;126(4):965–976.
  • Chen Y, Ye M, Song L, et al. Piezoelectric and photothermal dual functional film for enhanced dermal wound regeneration via upregulation of Hsp90 and HIF-1α. Appl Mater Today. 2020 Sep 01;20:100756.
  • Wang L, Liu S, Wang Z, et al. Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano. 2016 Feb 23;10(2):2636–2643.
  • Yu X, Wang S, Zhang X, et al. Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing. Nano Energy. 2018;46:29–38.
  • Kim KN Biocompatible and Flexible Nanogenerators for Wearable and Implantable Mechano-Energy Harvester; 2015.
  • Hu W, Wei X, Zhu L, et al. Enhancing proliferation and migration of fibroblast cells by electric stimulation based on triboelectric nanogenerator. Nano Energy. 2019;57:600–607.
  • Jeong S-H, Lee Y, Lee M-G, et al. Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy. 2021;79:105463.
  • Du S, Zhou N, Xie G, et al. Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: toward promoting infected wounds healing. Nano Energy. 2021;85:106004.
  • Haesler E, Rayner RL, Carville KJ. The pan pacific clinical practice guideline for the prevention and management of pressure injury. Wound Pract Res. 2012;20:6.
  • Garber, SL, Biddle, AK, Click, CN. Pressure ulcer prevention and treatment following spinal cord injury: a clinical practice guideline for health-care proffessionals. J Spinal Cord Med. 2001 Spring 01;24(sup1):S40–S101.
  • Chen G, Li Y, Bick M, et al. Smart textiles for electricity generation. Chem Rev. 2020 Apr 22;120(8):3668–3720.
  • Yao M, Xie G, Gong Q, et al. Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators. Beilstein J Nanotechnol. 2020;11:1590–1595.
  • Wan D, Yang J, Cui X, et al. Human body-based self-powered wearable electronics for promoting wound healing driven by biomechanical motions. Nano Energy. 2021 Nov 01;89:106465.
  • Jeong S-H, Lee Y, Lee M-G, et al. Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy. 2021 Jan 01;79:105463.
  • Du S, Zhou N, Xie G, et al. Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: toward promoting infected wounds healing. Nano Energy. 2021 Jul 01;85:106004.
  • Lama J, Yau A, Chen G, et al. Textile triboelectric nanogenerators for self-powered biomonitoring. J Mater Chem A. 2021;9(35):19149–19178.
  • Feng H, Zhao C, Tan P, et al. Nanogenerator for biomedical applications. Adv Healthc Mater. 2018;7(10):1701298.
  • Rajendran SB, Challen K, Wright KL, et al. Electrical stimulation to enhance wound healing. J Funct Biomater. 2021;12(2):40.