2,978
Views
5
CrossRef citations to date
0
Altmetric
New topics/Others

Natural aluminosilicate nanotubes loaded with RuCo as nanoreactors for Fischer-Tropsch synthesis

, , , , , , , , & show all
Pages 17-30 | Received 14 Oct 2021, Accepted 07 Dec 2021, Published online: 18 Jan 2022

References

  • Gonçalves Dos Santos R, Cardoso Alencar A. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review. Int J Hydrogen Energy. 2020;45:18114–18132.
  • Abdulrasheed A, Abdul Jalil A, Gambo Y, et al. A review on catalyst development for dry reforming of methane to syngas: recent advances. Renew Sust Energ Rev. 2019;108:175–193.
  • Peron DV, Barrios AJ, Taschin A, et al. Active phases for high temperature Fischer-Tropsch synthesis in the silica supported iron catalysts promoted with antimony and tin. Appl Catal B: Environ. 2021;292:120141.
  • Bao J, Yang G, Yoneyama Y, et al. Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions. ACS Catal. 2019;9:3026–3053.
  • Romar H, Lillebø AH, Tynjälä P, et al. Characterisation and catalytic Fischer–Tropsch activity of Co–Ru and Co–Re catalysts supported on c-Al2O3, TiO2 and SiC. Top Catal. 2015;58:887–895.
  • Qi Z, Chen L, Zhang S, et al. A mini review of cobalt-based nanocatalyst in Fischer-Tropsch synthesis. Appl Catal A. 2020;602:117701.
  • Diehl F, Khodakov AY. Promotion of cobalt Fischer-Tropsch catalysts with noble metals: a review. Oil Gas Sci Technol -Rev. 2009;64:11–24.
  • Khodakov AY, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev. 2007;107:1692–1744.
  • Tsubaki N, Sun S, Fujimoto K. Different functions of the noble metals added to cobalt catalysts for Fischer–Tropsch synthesis. J Catal. 2001;199:236–246.
  • Martinez A, Lopez C, Marquez F, et al. Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. J Catal. 2003;220:486–499.
  • Torshizi HO, Pour AN, Mohammadi A, et al. Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity. Front Chem Sci Eng. 2021;15:299–309.
  • Vosoughi V, Badoga S, Dalai AK, et al. Effect of pretreatment on physicochemical properties and performance of multiwalled carbon nanotube supported cobalt catalyst for Fischer-Tropsch synthesis. Ind Eng Chem Res. 2016;55:6049–6059.
  • Haghtalab A, Mosayebi A. Co@ Ru nanoparticle with core–shell structure supported over γ-Al2O3 for Fischer–Tropsch synthesis. Int J Hydrogen Energy. 2014;39:18882–18893.
  • Zhang Q, Kang J, Wang Y. Development of novel catalysts for Fischer–Tropsch synthesis: tuning the product selectivity. ChemCatChem. 2010;2:1030–1058.
  • Lapidus AL, Eliseev OL, Volkov AS, et al. Highly selective cobalt-based zeolite catalysts for isoparaffin synthesis. Solid Fuel Chem. 2007;41:140–143.
  • Miners SA, Rance GA, Khlobystov AN. Chemical reactions confined within carbon nanotubes. Chem Soc Rev. 2016;45:4727–4746.
  • Tingjun F, Zhenhua L. Review of recent development in Co-based catalysts supported on carbon materials for Fischer–Tropsch synthesis. Chem Eng Sci. 2015;135:3–20.
  • Phaahlamohlaka TN, Kumia DO, Dlamini MW, et al. Ruthenium nanoparticles encapsulated inside porous hollow carbonspheres: a novel catalyst for Fischer–Tropsch synthesis. Catal Today. 2016;275:76–83.
  • Stavitskaya AV, Kozlova EA, Kurenkova Y, et al. Ru/CdS quantum dots templated on clay nanotubes as visible-light-active photocatalysts: optimization of S/Cd Ratio and Ru content. Chem Eur J. 2020;26(57):130085–13092.
  • Stavitskaya A, Shakhbazova C, Cherednichenko Y, et al. Antibacterial properties and in vivo studies of tannic acid-stabilized silver–halloysite nanomaterials. Clay Minerals. 2020;55(2):112–119.
  • Lvov Y, Panchal A, Fu Y, et al. Interfacial self-assembly in halloysite nanotube composites. Langmuir. 2019;35:8646–8657.
  • Iglesia E, Soled SL, Fiato RA. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J Catal. 1992;137:212–224.
  • Stavitskaya A, Mazurova K, Kotelev M, et al. Ruthenium-loaded halloysite nanotubes as mesocatalysts for Fischer–Tropsch synthesis. Molecules. 2019;25:1764.
  • Jacobs G, Patterson PM, Zhang Y, et al. Fischer–Tropsch synthesis: deactivation of noble metal-promoted Co/Al2O3 catalysts. Appl Catal A. 2002;233:215–226.
  • Najafabadi AT, Khodadadi AA, Parnian MJ, et al. Atomic layer deposited Co/γ-Al2O3 catalyst with enhanced cobalt dispersion and Fischer–Tropsch synthesis activity and selectivity. Appl Catal A Gen. 2016;511:31–46.
  • Jiang Y, Fu T, Lu J, et al. A zirconium modified Co/SiO2 Fischer-Tropsch catalyst prepared by dielectric-barrier discharge plasma. J Energy Chem. 2013;22:506–511.
  • Bertella F, Concepción P, Martinez A. TiO2 polymorph dependent SMSI effect in Co-Ru/TiO2 catalysts and its relevance to Fischer-Tropsch synthesis. Catal.Today 2017;289:181–191.
  • Parnian MJ, Najafabadi AT, Mortazavi Y, et al. Ru promoted cobalt catalyst on γ-Al2O3: influence of different catalyst preparation method and Ru loadings on Fischer–Tropsch reaction and kinetics. Appl Surf Sci. 2014;313:183–195.
  • Parnian J, Khodadadi AA, Najafabadi AT, et al. Preferential chemical vapor deposition of ruthenium on cobalt with highly enhanced activity and selectivity for Fischer–Tropsch synthesis. Appl Catal A. 2014;470:221–231.
  • Yang G, Xing C, Hirohama W, et al. Tandem catalytic synthesis of light isoparaffin from syngas via Fischer–Tropsch synthesis by newly developed core–shell-like zeolite capsule catalysts. Catal Today. 2013;215:29–35.
  • Satterfield CN. Heterogeneous catalysis in industrial practice. New York: McGraw-Hill; 1991.
  • Irandoust A, Haghtalab A. A Hybrid Reduction–Impregnation Method in preparation of Co–Ru/γ-Al2O3 catalyst for Fischer–Tropsch synthesis. Catal Lett. 2017;147:2967–2981.
  • Glotov A, Stavitskaya A, Novikov A, et al. Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials. 1st ed. Netherlands: Elsevier. Chapter 4, Halloysite Based Core-Shell Nanosystems: Synthesis and Application. Nanomaterials from Clay Minerals. 2019;203–256.
  • Zeng X, Wang Q, Wang H, et al. Catalytically active silver nanoparticles loaded in the lumen of halloysite nanotubes via electrostatic interactions. J Mater Sci. 2017;52:8391–8400.
  • Vinokurov VA, Stavitskaya AV, Chudakov YA, et al. Core-shell nanoarchitecture: Schiff-base assisted synthesis of ruthenium in clay nanotubes. Pure Appl Chem. 2018;90:825–832.
  • Mazurova KM, Nedolivko VV, Boev SS, et al. Influence of the procedure for preparing ruthenium nanoparticles on the internal surface of aluminosilicate nanotubes on their catalytic properties in benzene hydrogenation in the presence of water. Pet Chem. 2021;61:676–681.
  • van de Loosdrecht J, Barradas S, Caricato EA, et al. Calcination of co-based Fischer–Tropsch synthesis catalysts. Top Catal. 2003;26:121–127.
  • Liu CC, Li JL, Zhang YH, et al. Fischer-Tropsch synthesis over cobalt catalysts supported on nanostructured alumina with various morphologies. J Mol Catal A Chem. 2012;363:335–342.
  • Park JY, Lee YJ, Karandikar PR, et al. Ru promoted cobalt catalyst on γ-Al2O3 support: influence of pre-synthesized nanoparticles on Fischer-Tropsch reaction. J Mol Catal A Chem. 2011;344:153–160.
  • Haghtalab A, Shariati J, Mosayebi A. Experimental and kinetic modeling of Fischer–Tropsch synthesis over nano structure catalyst of Co–Ru/carbon nanotube. React Kinet Mech Catal. 2019;126:1003–1026.
  • Da Silva JF, Bragança LFFPG, Pais Da Silva MI. Catalytic performance of KL zeolite-supported iron and cobalt catalysts for the Fischer–Tropsch synthesis. React Kinet Mech Catal. 2018;124:563–574.
  • Li YP, Wang TJ, Wu CZ, et al. Effect of Ru addition to Co/SiO2/HZSM-5 catalysts on Fischer–Tropsch synthesis of gasoline-range hydrocarbons. Catal Commun. 2009;10:1868–1874.
  • Szczepanik B, Słomkiewicz P, Garnuszek M, et al. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies. J Mol Struct. 2015;1084:16–22.
  • Iida H, Sakamoto K, Takeuchi M, et al. Fischer tropsch synthesis over Co/SiO2 and Co-M (M: ru, Re)/SiO2 catalysts prepared by a high-temperature super-critical drying method. Appl Catal A-Gen. 2013;466:256–263.
  • Kogelbauer A, Goodwin JG, Oukaci R. Ruthenium promotion of Co/Al2O3 Fischer–Tropsch catalysts. J Catal. 1996;160:125–133.
  • Trépanier M, Tavasoli A, Dalai A, et al. Co, Ru and K loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer–Tropsch synthesis. Appl Catal A-Gen. 2009;353:193–202.
  • Moradian А, Bahadoran F, Shirazi L, et al. Fischer-Tropsch synthesis: variation of Co/γ-Al2O3 catalyst performance due to changing dispersion, reducibility, acidity and strong metal-support interaction by Ru, Zr and Ce promoters. Int J Chem React Eng. 2017:1–22. doi:10.1515/ijcre-2017-0070
  • Li J, Jacobs G, Zhang Y, et al. Fischer–Tropsch synthesis: effect of small amounts of boron, ruthenium and rhenium on Co/TiO2 catalysts. Appl Catal A: Gen. 2002;223:195–203.
  • Shariati J, Haghtalab A, Mosayebi A. Fischer–Tropsch synthesis using Co and Co-Ru bifunctional nanocatalyst supported on carbon nanotube prepared via chemical reduction method. J Energy Chem. 2019;28:9–22.
  • Chen S, Li J, Zhang Y, et al. Effect of preparation method on halloysite supported cobalt catalysts for Fischer-Tropsch synthesis. J Nat Gas Sci Eng. 2012;21:426–430.
  • Jongsomjit B, Panpranot J, Goodwin JG. Co-support compound formation in alumina-supported cobalt catalysts, J. Catal. 2001;204:98–109.
  • Morales F, Weckhuysen BM. Promotion effects in co-based Fischer-Tropsch catalysis. Catal. 2006;19:1–40.
  • Lia X, Almkhelfea H, Bedfordb NM, et al. Characterization and catalytic behavior of Fischer–Tropsch catalysts derived from different cobalt precursors. Catal Today. 2019;338:40–51.
  • Rochefort D, Dabo P, Guay D, et al. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochim Acta. 2003;48:4245–4252.
  • Kim K. X-Ray photoelectron spectroscopic studies of ruthenium-oxygen surfaces. J Catal. 1974;35:66–72.
  • Gaur S, Pakhare D, Wu H, et al. CO2 reforming of CH4 over Ru-substituted pyrochlore catalysts: effects of temperature and reactant feed ratio. Energy Fuels. 2012;26(4):1989–1998.
  • Khassin AA, Yurieva TM, Kaichev VV, et al. Metal–support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies. J Mol Cat A: Chem. 2001;175:189–204.
  • Biesinger MC, Payne BP, Grosvenor AP, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci. 2011;257:2717–2730.
  • Sanchez-Ballester NM, Ramesh GV, Tanabe T, et al. Activated interiors of clay nanotubes for agglomeration-tolerant automotive exhaust remediation. J Mater Chem A. 2015;3:6614–6619.
  • Tavasoli A, Karimi S, Taghavi S, et al. Comparing the deactivation behaviour of Co/CNT and Co/γ-Al2O3 nano catalysts in Fischer-Tropsch synthesis. J Nat Gas Sci Eng. 2012;21:605–613.
  • Schulz H, Claeys M, Harms S. Effect of water partial pressure on steady state Fischer-Tropsch activity and selectivity of a promoted cobalt catalyst. Stud Surf Sci Catal. 1997;107:193–200.
  • Novak S, Madon RJ. Models of hydrocarbon product distributions in Fischer–Tropsch synthesis. J Chem Phys. 1981;74:6083–6091.
  • Zhuo M, Fei Tan K, Borgna A, et al. Density functional theory study of the CO insertion mechanism for Fischer−Tropsch synthesis over Co catalysts. J Phys Chem. 2009;113:8357–8365.
  • van Santen RA, Ghouri RR, Shetty S, et al. Structure sensitivity of the Fischer–Tropsch reaction; molecular kinetics simulations. Catal Sci Technol. 2011;1:891–911.
  • Eliseev OL, Savost’yanov AP, Sulima SI, et al. Recent development in heavy paraffins synthesis from CO and H2. Mendeleev Commun. 2018;28:345–351.
  • Fu L, Bartholomew CH. Structure sensitivity and its effects on product distribution in CO hydrogenation on cobalt/alumina. J Catal. 1985;92:376–387.
  • Song SН, Lee SB, Bae JW, et al. Influence of Ru segregation on the activity of Ru–Co/ɣ-Al2O3 during FT synthesis: a comparison with that of Ru–Co/SiO2 catalysts. Catal Commun. 2008;9:2282–2286.
  • Sartipi S, Alberts M, Nasalevich M, et al. Insights into the catalytic performance of mesoporous H-ZSM-5-supported cobalt in Fischer-Tropsch synthesis. ChemCatChem. 2014;6:142–151.
  • Panpranot J, Goodwin JG Jr, Sayari A. Synthesis and characteristics of MCM-41 supported CoRu catalysts. Catal Today. 2002;77:269–284.
  • Coronel-García MA, Reyes De La Torre AI, Melo-Banda JA, et al. Study of Co, Ru/SBA-15 type materials for Fischer-Tropsch synthesis in fixed bed tubular reactor: i. Effect of the high Ru content on the catalytic activity. Int J Hydrogen Energy. 2015;40:17264–17271.