6,497
Views
16
CrossRef citations to date
0
Altmetric
Energy Materials

Perspective on design and technical challenges of Li-garnet solid-state batteries

&
Pages 41-48 | Received 26 Oct 2021, Accepted 10 Dec 2021, Published online: 18 Jan 2022

References

  • Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev. 2014;43(13):4714–4727.
  • Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem, Int Ed Engl. 2007;46(41):7778–7781.
  • Ohta S, Kobayashi T, Asaoka T. High lithium ionic conductivity in the garnet-type oxide Li7−XLa3(Zr2−X, NbX)O12 (x=0–2). J Power Sources. 2011;196(6):3342–3345.
  • Allen JL, Wolfenstine J, Rangasamy E, et al. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J Power Sources. 2012;206:315–319.
  • Ohta S, Kihira Y, Asaoka T. Spontaneous formation of a core–shell structure by a lithium ion conductive garnet-type oxide electrolyte for co-sintering with the cathode. J Mater Chem A. 2021;9:3353–3359.
  • Buschmann H, Berendts S, Mogwitz B, et al. Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure. J Power Sources. 2012;206:236–244.
  • Buschmann H, Dölle J, Berendts S, et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys Chem Chem Phys. 2011;13(43):19378–19392.
  • Afyon S, Kravchyk KV, Wang S, et al. Building better all-solid-state batteries with Li-garnet solid electrolytes and metalloid anodes. J Mater Chem A. 2019;7(37):21299–21308.
  • Kanno R, Murayama M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J Electrochem Soc. 2001;148(7):A742.
  • Murayama M, Sonoyama N, Yamada A, et al. Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system. Solid State Ion. 2004;170(3):173–180.
  • Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater. 2011;10(9):682–686.
  • Hayashi A, Hama S, Morimoto H, et al. Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J Am Ceram Soc. 2001;84(2):477–479.
  • Seino Y, Ota T, Takada K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci. 2014;7(2):627–631.
  • Deiseroth H-J, Kong S-T, Eckert H, et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem, Int Ed Engl. 2008;47(4):755–758.
  • Rao RP, Adams S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys Status Solidi. 2011;208(8):1804–1807.
  • Taylor NJ, Stangeland-Molo S, Haslam CG, et al. Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte. J Power Sources. 2018;396:314–318.
  • Sharafi A, Haslam CG, Kerns RD, et al. Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J Mater Chem A. 2017;5(40):21491–21504.
  • Rangasamy E, Wolfenstine J, Sakamoto J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion. 2012;206:28–32.
  • Han F, Westover AS, Yue J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy. 2019;4(3):187–196.
  • Thangadurai V, Pinzaru D, Narayanan S, et al. Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage. J Phys Chem Lett. 2015;6(2):292–299.
  • Connell JG, Fuchs T, Hartmann H, et al. Kinetic versus thermodynamic stability of LLZO in contact with lithium Metal. Chem Mater. 2020;32(23):10207–10215.
  • Zhu Y, Connell JG, Tepavcevic S, et al. Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal. Adv Energy Mater. 2019;9(12):1803440.
  • Ren Y, Liu T, Shen Y, et al. Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. J Mater. 2016;2(3):256–264.
  • Miara L, Windmüller A, Tsai C-L, et al. About the compatibility between high Voltage spinel cathode materials and solid oxide electrolytes as a function of temperature. ACS Appl Mater Interfaces. 2016;8(40):26842–26850.
  • Kim KJ, Rupp JLM. All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries. Energy Environ Sci. 2020;13(12):4930–4945.
  • Shin R-H, Son S-I, Lee S-M, et al. Effect of Li3BO3 additive on densification and ion conductivity of garnet-type Li7La3Zr2O12 solid electrolytes of all-solid-state lithium-ion batteries. J Korean Ceram Soc. 2016;53(6):712–718.
  • Shen H, Yi E, Amores M, et al. Oriented porous LLZO 3D structures obtained by freeze casting for battery applications. J Mater Chem A. 2019;7(36):20861–20870.
  • Hitz GT, McOwen DW, Zhang L, et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater Today. 2019;22:50–57.
  • Krauskopf T, Hartmann H, Zeier WG, et al. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl Mater Interfaces. 2019;11(15):14463–14477.
  • Kasemchainan J, Zekoll S, Spencer Jolly D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat Mater. 2019;18(10):1105–1111.
  • Sakamoto J. More pressure needed. Nat Energy. 2019;4(10):827–828.
  • Zhang X, Wang QJ, Harrison KL, et al. Pressure-driven interface evolution in solid-state lithium metal batteries. Cell Rep Phys Sci. 2020;1(2):100012.
  • Doux J-M, Nguyen H, Tan DHS, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv Energy Mater. 2020;10(1):1903253.
  • Han X, Gong Y, Fu K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017;16(5):572–579.
  • Sharafi A, Yu S, Naguib M, et al. Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance. J Mater Chem A. 2017;5(26):13475–13487.
  • Cheng L, Crumlin EJ, Chen W, et al. The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys. 2014;16(34):18294–18300.
  • Cheng L, Wu CH, Jarry A, et al. Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes. ACS Appl Mater Interfaces. 2015;7(32):17649–17655.
  • Wang M, Sakamoto J. Correlating the interface resistance and surface adhesion of the Li metal-solid electrolyte interface. J Power Sources. 2018;377:7–11.
  • Wang C, Fu K, Kammampata SP, et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev. 2020;120(10):4257–4300.
  • Sharafi A, Kazyak E, Davis AL, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem Mater. 2017;29(18):7961–7968.
  • Besli MM, Usubelli C, Metzger M, et al. Effect of liquid electrolyte soaking on the interfacial resistance of Li7La3Zr2O12 for all-solid-state lithium batteries. ACS Appl Mater Interfaces. 2020;12(18):20605–20612.
  • Huo H, Chen Y, Zhao N, et al. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy. 2019;61:119–125.
  • Dubey R, Sastre J, Cancellieri C, et al. Building a better Li-garnet solid electrolyte/metallic Li interface with antimony. Adv Energy Mater. 2021;11(39):2102086.
  • Fu K, Gong Y, Fu Z, et al. Transient behavior of the metal interface in lithium metal–garnet batteries. Angew Chem Int Ed. 2017;56(47):14942–14947.
  • Luo W, Gong Y, Zhu Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and li-metal anode by a germanium layer. Adv Mater. 2017;29(22):1606042.
  • Liu K, Zhang R, Wu M, et al. Ultra-stable lithium plating/stripping in garnet-based lithium-metal batteries enabled by a SnO2 nanolayer. J Power Sources. 2019;433:226691.
  • Shao Y, Wang H, Gong Z, et al. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett. 2018;3(6):1212–1218.
  • Yi E, Wang W, Kieffer J, et al. Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO). J Mater Chem A. 2016;4(33):12947–12954.
  • Randau S, Weber DA, Kötz O, et al. Benchmarking the performance of all-solid-state lithium batteries. Nat Energy. 2020;5(3):259–270.
  • Kim KJ, Balaish M, Wadaguchi M, et al. Solid-state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv Energy Mater. 2021;11(1):2002689.
  • Liu Q, Geng Z, Han C, et al. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J Power Sources. 2018;389:120–134.
  • Kravchyk KV, Okur F, Kovalenko MV. Break-even analysis of all-solid-state batteries with Li-garnet solid electrolytes. ACS Energy Lett. 2021;6(6):2202–2207.