3,322
Views
6
CrossRef citations to date
0
Altmetric
Organic and soft materials (colloids, liquid crystals, gel, polymers)

Topological alternation from structurally adaptable to mechanically stable crosslinked polymer

ORCID Icon, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 66-75 | Received 27 Nov 2021, Accepted 31 Dec 2021, Published online: 01 Feb 2022

References

  • Lee E, Yang S. Bio-inspired responsive polymer pillar arrays. MRS Commun. 2015;5:97–114.
  • Zheng N, Xu Y, Zhao Q, et al. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem Rev. 2021;121:1716–1745.
  • Scheutz GM, Lessard JJ, Sims MB, et al. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J Am Chem Soc. 2019;141:16181–16196.
  • Tsai HY, Fujita T, Wang S, et al. Environmentally friendly recycling system for epoxy resin with dynamic covalent bonding. Sci Technol Adv Mater. 2021;22:532–542.
  • Xu Y, Li Y, Zheng N. Transparent origami glass. Nat Commun. 2021;12:1–6.
  • Zhao Q, Zou W, Luo Y, et al. Shape memory polymer network with thermally distinct elasticity and plasticity. Sci Adv. 2016;2:1–8.
  • Yang Y, Terentjev EM, Wei Y, et al. Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nat Commun. 2018;9:1–7.
  • Winne JM, Leibler L, Du Prez FE. Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polym Chem. 2019;10:6091–6108.
  • Denissen W, Droesbeke M, Nicola R, et al. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nat Commun. 2017;8:1–7.
  • Li L, Chen X, Jin K, et al. Vitrimers designed both to strongly suppress creep and to recover original cross-link density after reprocessing: quantitative theory and experiments. Macromolecules. 2018;51:5537–5546.
  • Wang S, Ma S, Li Q, et al. Facile preparation of polyimine vitrimers with enhanced creep resistance and thermal and mechanical properties via metal coordination. Macromolecules. 2020;53:2919–2931.
  • Liu Y, Tang Z, Wu S, et al. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers. ACS Macro Lett. 2019;8:193–199.
  • Guerre M, Taplan C, Nicolaÿ R, et al. Fluorinated vitrimer elastomers with a dual temperature response. J Am Chem Soc. 2018;140:13272–13284.
  • Lessard JJ, Scheutz GM, Sung SH, et al. Block copolymer vitrimers. J Am Chem Soc. 2020;142:283–289.
  • Behn M, Goldsby D, Hirth G. The role of grain-size evolution on the rheology of ice: implications for reconciling laboratory creep data and the Glen flow law. Cryosph Discuss. 2021;15:4589–4605.
  • Cao P, Wu J, Zhang Z, et al. Mechanical properties of bi- and poly-crystalline ice. AIP Adv. 2018;8:125108.
  • Theile T, Löwe H, Theile TC, et al. Simulating creep of snow based on microstructure and the anisotropic deformation of ice. Acta Mater. 2011;59:7104–7113.
  • Hamann I, Weikusat C, Azuma N, et al. Evolution of ice crystal microstructure during creep experiments. 2007;J Glaciol. 53:479–489.
  • Zou W, Jin B, Wu Y, et al. Light-triggered topological programmability in a dynamic covalent polymer network. Sci Adv. 2020;6:1–8.
  • Hu WH, Tenjimbayashi M, Wang S, et al. Postprogrammable network topology with broad gradients of mechanical properties for reliable polymer material engineering. Chem Mater. 2021;33:6876–6884.
  • Wang S, Yang L, Wang H, et al. Nonequilibrium transesterification for programming a material’s stiffening. 2019;ACS Appl Polym Mater. 1:3227–3232.
  • Terayama K, Tamura R, Nose Y, et al. Efficient construction method for phase diagrams using uncertainty sampling. Phys Rev Mater. 2019;3:1–8.
  • Terayama K, Han K, Katsube R, et al. Acceleration of phase diagram construction by machine learning incorporating Gibbs’ phase rule. Scr Mater. 2022;208:114335.
  • Pruksawan S, Lambard G, Samitsu S, et al. Prediction and optimization of epoxy adhesive strength from a small dataset through active learning. Sci Technol Adv Mater. 2019;20:1010–1021.
  • Nevejans S, Ballard N, Miranda JI, et al. The underlying mechanisms for self-healing of poly(disulfide)s. 2016;Phys Chem Chem Phys. 18:27577–27583.
  • Zhang Q, Deng YX, Luo HX, et al. Assembling a natural small molecule into a supramolecular network with high structural order and dynamic functions. J Am Chem Soc. 2019;141:12804–12814.
  • Zhang Q, Shi CY, Qu DH, et al. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Sci Adv. 2018;4:eaat8192.
  • Teders M, Henkel C, Anhäuser L, et al. The energy-transfer-enabled biocompatible disulfide–ene reaction. Nat Chem. 2018;10:981–988.
  • Imbernon L, Oikonomou EK, Norvez S, et al. Chemically crosslinked yet reprocessable epoxidized natural rubber via thermo-activated disulfide rearrangements. Polym Chem. 2015;6:4271–4278.
  • Ciarella S, Sciortino F, Ellenbroek WG. Dynamics of vitrimers: defects as a highway to stress relaxation. Phys Rev Lett. 2018;121:58003.
  • Li J, Ran R, Wang H, et al. Aerodynamics-assisted, efficient and scalable kirigami fog collectors. Nat Commun. 2021;12:1–8.
  • Babaee S, Shi Y, Abbasalizadeh S, et al. Kirigami-inspired stents for sustained local delivery of therapeutics. Nat Mater. 2021;20:1085–1092.
  • Hong Y, Wang B, Lin W, et al. Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders. Sci Adv. 2021;7:1–11.
  • Zhang X, Medina L, Cai H, et al. Kirigami engineering—Nanoscale structures exhibiting a range of controllable 3D configurations. Adv Mater. 2021;33:1–7.