8,270
Views
19
CrossRef citations to date
0
Altmetric
Focus on Composite Materials for Functional Electronic Devices

Recent advances in two-dimensional ferromagnetism: strain-, doping-, structural- and electric field-engineering toward spintronic applications

ORCID Icon, ORCID Icon, , , &
Pages 140-160 | Received 06 Sep 2021, Accepted 09 Jan 2022, Published online: 17 Feb 2022

References

  • Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature. 2017;546:265–269.
  • Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 2017;546:270–273.
  • Shabbir B, Nadeem M, Dai Z, et al. Long range intrinsic ferromagnetism in two dimensional materials and dissipationless future technologies. Appl Phys Rev. 2018;5:041105.
  • Burch KS, Mandrus D, Park J-G. Magnetism in two-dimensional van der Waals materials. Nature. 2018;563:47–52.
  • Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett. 1966;17:1307.
  • Huang P, Zhang P, Xu S, et al. Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. Nanoscale. 2020;12:2309–2327.
  • Jiang X, Liu Q, and Xing J, et al. Recent progress on 2D magnets: fundamental mechanism, structural design and modification. Appl Phys Rev. 2021;8:031305.
  • Sivadas N, Okamoto S, Xu X, et al. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 2021;18:7658–7664.
  • Chen G, Howard ST, Maghirang AB, et al. Correlating structural, electronic, and magnetic properties of epitaxial VSe2 thin films. Phys Rev B. 2020;102:115149.
  • Stanford MG, Rack PD, Jariwala D. Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. Npj 2D Mater Appl. 2018;2:1–15.
  • Li M-Y, Chen C-H, Shi Y, et al. Heterostructures based on two-dimensional layered materials and their potential applications. Mater Today. 2016;19:322–335.
  • Wang H, Liu F, Fu W, et al. Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale. 2014;6:12250–12272.
  • Otrokov MM, Rusinov IP, Blanco-Rey M, et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi 2 Te 4 films. Phys Rev Lett. 2019;122:107202.
  • Wang YY, Gao RX, Ni ZH, et al. Thickness identification of two-dimensional materials by optical imaging. Nanotechnology. 2012;23:495713.
  • Zhang L, Zhou J, Li H, et al. Recent progress and challenges in magnetic tunnel junctions with 2D materials for spintronic applications. Appl Phys Rev. 2021;8:021308.
  • Piquemal-Banci M, Galceran R, Martin M-B, et al. 2D-MTJs: introducing 2D materials in magnetic tunnel junctions. J Phys Appl Phys. 2017;50:203002.
  • Yang S, Chen Y, Jiang C. Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat. 2021;3:397–420.
  • Wu W, Wang L, Li Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature. 2014;514:470–474.
  • Hu G, Xiang B. Recent advances in two-dimensional spintronics. Nanoscale Res Lett. 2020;15:226.
  • Ningrum VP, Liu B, Wang W, et al. Recent advances in two-dimensional magnets: physics and devices towards spintronic applications. Research. 2020;2020:1768918.
  • Huertas-Hernando D, Guinea F, Brataas A. Spin-orbit-mediated spin relaxation in graphene. Phys Rev Lett. 2009;103:146801.
  • Dugaev VK, Sherman E, Barnaś J. Spin dephasing and pumping in graphene due to random spin-orbit interaction. Phys Rev B. 2011;83:085306.
  • Ciccarino, CJ, Christensen, T, Sundararaman, R, Narang, P. Dynamics and Spin-Valley Locking Effects in Monolayer Transition Metal Dichalcogenides. Nano Lett. 2018;18:5709–15.
  • Bawden L, Cooil SP, Mazzola F, et al. Spin–valley locking in the normal state of a transition-metal dichalcogenide superconductor. Nat Commun. 2016;7:11711.
  • Zhong D, Seyler KL, Linpeng X, et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat Nanotechnol. 2020;15:187–191.
  • Efetov DK, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys Rev Lett. 2010;105:256805.
  • Ye J, Craciun MF, Koshino M, et al. Accessing the transport properties of graphene and its multilayers at high carrier density. PNAS. 2011;108:13002–13006.
  • Frisenda R, Navarro-Moratalla E, Gant P, et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem Soc Rev. 2018;47:53–68.
  • Zhang YJ, Oka T, Suzuki R, et al. Electrically switchable chiral light-emitting transistor. Science. 2014;344:725–728.
  • Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol. 2018;13:289–293.
  • Li J, Zhao B, Chen P, et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv Mater. 2018;30:1801043.
  • Liu C-W, Dai -J-J, Wu S-K, et al. Substrate-induced strain in 2D layered GaSe materials grown by molecular beam epitaxy. Sci Rep. 2020;10:12972.
  • Tweedie MEP, Sheng Y, Sarwat SG, et al. Inhomogeneous strain release during bending of WS2 on flexible substrates. ACS Appl Mater Interfaces. 2018;10:39177–39186.
  • Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano. 2011;5:9703–9709.
  • Zhang P, Peng X-L, Qian T, et al. Observation of high-Tc superconductivity in rectangular FeSe/SrTiO3(110) monolayers. Phys Rev B. 2016;94:104510.
  • Peng R, Xu HC, Tan SY, et al. Tuning the band structure and superconductivity in single-layer FeSe by interface engineering. Nat Commun. 2014;5:5044.
  • Webster L, Yan J-A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B. 2018;98:144411.
  • Xu B, Li S, Jiang K, et al. Switching of the magnetic anisotropy via strain in two dimensional multiferroic materials: crSX (X = Cl, Br, I). Appl Phys Lett. 2020;116:052403.
  • Zhou Y, Wang Z, Yang P, et al. Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. ACS Nano. 2012;6:9727–9736.
  • Miao N, Xu B, Zhu L, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc. 2018;140:2417–2420.
  • Huang C, Feng J, Wu F, et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J Am Chem Soc. 2018;140:11519–11525.
  • Li T, Jiang S, Sivadas N, et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat Mater. 2019;18:1303–1308.
  • León AM, González JW, Mejía-López J, et al. Strain-induced phase transition in CrI3 bilayers. 2D Mater. 2020;7:035008.
  • Li S, Ao Z, Zhu J, et al. Strain controlled ferromagnetic-antiferromagnetic transformation in Mn-Doped silicene for information transformation devices. J Phys Chem Lett. 2017;8:1484–1488.
  • Lieb EH. Two theorems on the Hubbard model. Phys Rev Lett. 1989;62:1201–1204.
  • Affleck I. Model for Quasi-One-Dimensional antiferromagnets: application to CsNiCl3. Phys Rev Lett. 1989;62:1927.
  • Meilikhov EZ, Farzetdinova RM. Quasi-two-dimensional diluted magnetic semiconductors with arbitrary carrier degeneracy. Phys Rev B. 2006;74:125204.
  • Yang L, Wu M, Yao K. Transition-metal-doped group-IV monochalcogenides: a combination of two-dimensional triferroics and diluted magnetic semiconductors. Nanotechnology. 2018;29:215703.
  • Seguini G, Schamm-Chardon S. Pellegrino P and Perego M, The energy band alignment of Si nanocrystals in SiO2. Appl Phys Lett. 2011;99:082107.
  • Mishra R, Zhou W, Pennycook SJ, et al. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys Rev B. 2013;88:144409.
  • Cheng YC, Zhu ZY, Mi WB, et al. Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems. Phys Rev B. 2013;87:100401.
  • Kanoun MB. Tuning magnetic properties of two-dimensional MoTe2 monolayer by doping 3d transition metals: insights from first principles calculations. J Alloys Compd. 2018;748:938–942.
  • Zhao X, Wang T, Xia C, et al. Magnetic doping in two-dimensional transition-metal dichalcogenide zirconium diselenide. J Alloys Compd. 2017;698:611–616.
  • Sun L, Zhou W, Liang Y, et al. Magnetic properties in Fe-doped SnS2: density functional calculations. Comput Mater Sci. 2016;117:489–495.
  • Zberecki K. Emergence of magnetism in doped two-dimensional honeycomb structures of III–V binary compounds. J Supercond Nov Magn. 2012;25:2533–2537.
  • Yazyev OV, Helm L. Defect-induced magnetism in graphene. Phys Rev B. 2007;75:125408.
  • Jang SW, Yoon H, Jeong MY, et al. Origin of ferromagnetism and the effect of doping on Fe3GeTe2. Nanoscale. 2020;12:13501–13506.
  • Pi K, Han W, McCreary KM, et al. Manipulation of Spin transport in graphene by surface chemical doping. Phys Rev Lett. 2010;104:187201.
  • Fan Y, Upadhyaya P, Kou X, et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat Mater. 2014;13:699–704.
  • Fan Y, Kou X, Upadhyaya P, et al. Electric-field control of spin–orbit torque in a magnetically doped topological insulator. Nat Nanotechnol. 2016;11:352–359.
  • Nie T, Tang J, Kou X, et al. Enhancing electric-field control of ferromagnetism through nanoscale engineering of high- Tc Mnx Ge1−x nanomesh. Nat Commun. 2016;7:12866.
  • Li B, Xing T, Zhong M, et al. A two-dimensional Fe-doped SnS 2 magnetic semiconductor. Nat Commun. 2017;8:1958.
  • Tokmachev AM, Averyanov DV, Parfenov OE, et al. Emerging two-dimensional ferromagnetism in silicene materials. Nat Commun. 2018;9:1672.
  • González-Herrero H, Gómez-Rodríguez JM, Mallet P, et al. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science. 2016;352:437–441.
  • Mak KF, He K, Lee C, et al. Tightly bound trions in monolayer MoS2. Nat Mater. 2013;12:207–211.
  • Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature. 2018;563:94–99.
  • Błoński P, Tuček J, Sofer Z, et al. Doping with graphitic nitrogen triggers ferromagnetism in graphene. J Am Chem Soc. 2017;139:3171–3180.
  • Zhang S-H, Liu B-G. Hole-doping-induced half-metallic ferromagnetism in a highly-air-stable PdSe2 monolayer under uniaxial stress. J Mater Chem C. 2018;6:6792–6798.
  • Yu S, Wang Y, Song Y, et al. Hole doping induced half-metallic itinerant ferromagnetism and giant magnetoresistance in CrI3 monolayer. Appl Surf Sci. 2021;535:147693.
  • Wang H, Fan F, Zhu S, et al. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. EPL. 2016;114:47001.
  • Cao T, Li Z, Louie SG. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe. Phys Rev Lett. 2015;114:236602.
  • Wu S, Dai X, Yu H, et al. Magnetisms in p-type monolayer gallium chalcogenides (GaSe, GaS). ArXiv:14094733 [Cond-Mat]. 2014.
  • Feng W, Guo G-Y, Yao Y. Tunable magneto-optical effects in hole-doped group-IIIA metal-monochalcogenide monolayers. 2D Mater. 2016;4:015017.
  • Gong S, Wan W, Guan S, et al. Tunable half-metallic magnetism in an atom-thin holey two-dimensional C2N monolayer. J Mater Chem C. 2017;5:8424–8430.
  • Fu B, Feng W, Zhou X, et al. Effects of hole doping and strain on magnetism in buckled phosphorene and arsenene. 2D Mater. 2017;4:025107.
  • Garcia JH, Vila M, Cummings AW, et al. Spin transport in graphene/transition metal dichalcogenide heterostructures. Chem Soc Rev. 2018;47:3359–3379.
  • Cardoso C, Soriano D, García-Martínez NA, et al. Van der Waals Spin valves. Phys Rev Lett. 2018;121:067701.
  • Shi H, Zhan Z, Qi Z, et al. Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat Commun. 2020;11:371.
  • Huang B, McGuire MA, May AF, et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat Mater. 2020;19:1276–1289.
  • Pan J, Yu J, Zhang Y-F, et al. Quantum anomalous Hall effect in two-dimensional magnetic insulator heterojunctions. Npj Comput Mater. 2020;6:1–8.
  • Zhang W, Wong PKJ, Zhu R, et al. Van der Waals magnets: wonder building blocks for two-dimensional spintronics? InfoMat. 2019;1:479–495.
  • Norden T, Zhao C, Zhang P, et al. Giant valley splitting in monolayer WS2 by magnetic proximity effect. Nat Commun. 2019;10:4163.
  • Ke C, Wu Y, Yang W, et al. Large and controllable spin-valley splitting in two-dimensional WS2/h-VN heterostructure. Phys Rev B. 2019;100:195435.
  • Xu L, Yang M, Shen L, et al. Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate. Phys Rev B. 2018;97:041405.
  • Wang B-J, Sun -Y-Y, Chen J, et al. Valley splitting in the antiferromagnetic heterostructure MnPSe3/WSe2. J Mater Chem C. 2021;9:3562–3568.
  • Yamasaki Y, Moriya R, Arai M, et al. Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS 2. 2D Mater. 2017;4:041007.
  • Hou Y, Kim J, Wu R. Magnetizing topological surface states of Bi2Se3 with a CrI3 monolayer. Sci Adv. 2019;5:eaaw1874.
  • Dong X-J, You J-Y, Zhang Z, et al. Great enhancement of Curie temperature and magnetic anisotropy in two-dimensional van der Waals magnetic semiconductor heterostructures. Phys Rev B. 2020;102:144443.
  • Gurram M, Omar S, van Wees BJ. Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructures. Nat Commun. 2017;8:248.
  • Ghazaryan D, Greenaway MT, Wang Z, et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat Electron. 2018;1:344–349.
  • Albarakati S, Tan C, Chen Z-J, et al. Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer heterostructures. Sci Adv. 2019;5:eaaw0409.
  • Hu G, Zhu Y, Xiang J, et al. Antisymmetric magnetoresistance in a van der Waals antiferromagnetic/ferromagnetic layered MnPS3/Fe3GeTe2 stacking heterostructure. ACS Nano. 2020;14:12037–12044.
  • Lin H, Yan F, Hu C, et al. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Appl Mater Interfaces. 2020;12:43921–43926.
  • Khan MF, Rehman S, Rehman MA, et al. Modulation of magnetoresistance polarity in BLG/SL-MoSe2 heterostacks. Nanoscale Res Lett. 2020;15:136.
  • Mendes JBS, Alves Santos O, Meireles LM, et al. Spin-current to charge-current conversion and magnetoresistance in a hybrid structure of graphene and yttrium iron garnet. Phys Rev Lett. 2015;115:226601.
  • Benítez LA, Sierra JF, Savero Torres W, et al. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nat Phys. 2018;14:303–308.
  • Gmitra M, Fabian J. Proximity effects in bilayer graphene on monolayer WSe2: field-effect spin valley locking, spin-orbit valve, and spin transistor. Phys Rev Lett. 2017;119:146401.
  • McCreary KM, Swartz AG, Han W, et al. Magnetic moment formation in graphene detected by scattering of pure spin currents. Phys Rev Lett. 2012;109:186604.
  • Wang Z, Tang C, Sachs R, et al. Proximity-induced ferromagnetism in graphene revealed by the anomalous hall effect. Phys Rev Lett. 2015;114:016603.
  • Yang HX, Hallal A, Terrade D, et al. Proximity effects induced in graphene by magnetic insulators: first-principles calculations on spin filtering and exchange-splitting gaps. Phys Rev Lett. 2013;110:046603.
  • Wei P, Lee S, Lemaitre F, et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat Mater. 2016;15:711–716.
  • Lazić P, Belashchenko KD, Žutić I. Effective gating and tunable magnetic proximity effects in two-dimensional heterostructures. Phys Rev B. 2016;93:241401.
  • Zhong D, Seyler KL, Linpeng X, et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci Adv. 2017;3:e1603113.
  • Wu Y-F, Song H-D, Zhang L, et al. Magnetic proximity effect in graphene coupled to a BiTeO3 nanoplate. Phys Rev B. 2017;95:195426.
  • Tong Q, Chen M, Yao W. Magnetic proximity effect in a van der Waals Moiré superlattice. Phys Rev Appl. 2019;12:024031.
  • Karpiak B, Cummings AW, Zollner K, et al. Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene. 2D Mater. 2019;7:015026.
  • Zhang L, Huang X, Dai H, et al. Proximity-coupling-induced significant enhancement of coercive field and curie temperature in 2D van der Waals heterostructures. Adv Mater. 2020;32:2002032.
  • Tokura Y, Yasuda K, Tsukazaki A. Magnetic topological insulators. Nat Rev Phys. 2019;1:126–143.
  • Nadeem M, Hamilton AR, Fuhrer MS, et al. Quantum Anomalous hall effect in magnetic doped topological insulators and ferromagnetic spin-gapless semiconductors—a perspective review. Small. 2020;16:1904322.
  • Huang C, Zhou J, Wu H, et al. Quantum anomalous Hall effect in ferromagnetic transition metal halides. Phys Rev B. 2017;95:045113.
  • Sun Q, Kioussis N. Prediction of manganese trihalides as two-dimensional Dirac half-metals. Phys Rev B. 2018;97:094408.
  • He J, Li X, Lyu P, et al. Near-room-temperature Chern insulator and Dirac spin-gapless semiconductor: nickel chloride monolayer. Nanoscale. 2017;9:2246–2252.
  • Wang HP, Luo W, Xiang HJ. Prediction of high-temperature quantum anomalous Hall effect in two-dimensional transition-metal oxides. Phys Rev B. 2017;95:125430.
  • Zhang S, Zhang C, Zhang S, et al. Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice. Phys Rev B. 2017;96:205433.
  • Morali N, Batabyal R, Nag PK, et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science. 2019;365(6459):1286–1291.
  • Ye L, Kang M, Liu J, et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature. 2018;555:638–642.
  • Kang M, Fang S, Ye L, et al. Topological flat bands in frustrated kagome lattice CoSn. Nat Commun. 2020;11:4004.
  • Pesin D, MacDonald AH. Spintronics and pseudospintronics in graphene and topological insulators. Nat Mater. 2012;11:409–416.
  • Fan Y, Wang KL. Spintronics based on topological insulators. SPIN. 2016;06:1640001.
  • He QL, Hughes TL, Armitage NP, et al. Topological spintronics and magnetoelectronics. Nat Mater. 2022;21:15–23.
  • Sekine A, Nomura K. Axion electrodynamics in topological materials. J Appl Phys. 2021;129:141101.
  • Fijalkowski KM, Liu N, Hartl M, et al. Any axion insulator must be a bulk three-dimensional topological insulator. Phys Rev B. 2021;103:235111.
  • Liu C, Wang Y, Li H, et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat Mater. 2020;19:522–527.
  • Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol. 2018;13:554–559.
  • Liu J, Shi M, Mo P, et al. Electrical-field-induced magnetic Skyrmion ground state in a two-dimensional chromium tri-iodide ferromagnetic monolayer. AIP Adv. 2018;8:055316.
  • Gonzalez-Arraga LA, Lado JL, Guinea F, et al. Electrically controllable magnetism in twisted bilayer graphene. Phys Rev Lett. 2017;119:107201.
  • Jiang S, Li L, Wang Z, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol. 2018;13:549–553.
  • Jiang S, Shan J, Mak KF. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater. 2018;17:406–410.
  • Huang B, Clark G, Klein DR, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol. 2018;13:544–548.
  • Song T, Tu MW-Y, Carnahan C, et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 2019;19:915–920.
  • Kitsak M, Gallos LK, Havlin S, et al. Identification of influential spreaders in complex networks. Nat Phys. 2010;6:888–893.
  • Liang S, Yang H, Renucci P, et al. Electrical spin injection and detection in molybdenum disulfide multilayer channel. Nat Commun. 2017;8:14947.
  • Yang J, Quhe R, Liu S, et al. Gate-tunable high magnetoresistance in monolayer Fe3GeTe2 spin valves. Phys Chem Chem Phys. 2020;22:25730–25739.
  • Karpan VM, Giovannetti G, Khomyakov PA, et al. Graphite and graphene as perfect spin filters. Phys Rev Lett. 2007;99:176602.
  • Han W. Perspectives for spintronics in 2D materials. APL Mater. 2016;4:032401.
  • Drögeler M, Franzen C, Volmer F, et al. Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices. Nano Lett. 2016;16:3533–3539.
  • Han W, Kawakami RK, Gmitra M, et al. Graphene spintronics. Nat Nanotechnol. 2014;9:794–807.
  • Roche S, Åkerman J, Beschoten B, et al. Graphene spintronics: the European Flagship perspective. 2D Mater. 2015;2:030202.
  • Piquemal-Banci M, Galceran R, Caneva S, et al. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers. Appl Phys Lett. 2016;108:102404.
  • Zhang H, Ye M, Wang Y, et al. Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions. Phys Chem Chem Phys. 2016;18:16367–16376.
  • Iqbal MZ, Siddique S, Hussain G, et al. Room temperature spin valve effect in the NiFe/Gr–hBN/Co magnetic tunnel junction. J Mater Chem C. 2016;4:8711–8715.
  • Song T, Cai X, Tu MW-Y, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science. 2018;360:1214–1218.
  • Yuasa S, Nagahama T, Fukushima A, et al. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater. 2004;3:868–871.
  • Parkin SSP, Kaiser C, Panchula A, et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater. 2004;3:862–867.
  • Yang W, Cao Y, Han J, et al. Spin-filter induced large magnetoresistance in 2D van der Waals magnetic tunnel junctions. Nanoscale. 2021;13:862–868.
  • Feng Y, Wu X, Hu L, et al. FeCl2/MoS2/FeCl2 van der Waals junction for spintronic applications. J Mater Chem C. 2020;8:14353–14359.
  • Wang Z, Sapkota D, Taniguchi T, et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 2018;18:4303–4308.
  • Zhang L, Li T, Li J, et al. Perfect spin filtering effect on Fe3GeTe2-based Van der Waals magnetic tunnel junctions. J Phys Chem C. 2020;124:27429–27435.
  • Zhou J, Qiao J, Duan C-G, et al. Large tunneling magnetoresistance in VSe2/MoS2 magnetic tunnel junction. ACS Appl Mater Interfaces. 2019;11:17647–17653.
  • Zhou H, Zhang Y, Zhao W. Tunable tunneling magnetoresistance in van der Waals magnetic tunnel junctions with 1T-CrTe2 electrodes. ACS Appl Mater Interfaces. 2021;13:1214–1221.
  • Datta S, Das B. Electronic analog of the electro‐optic modulator. Appl Phys Lett. 1990;56:665–667.
  • Semenov YG, Kim KW, Zavada JM. Spin field effect transistor with a graphene channel. Appl Phys Lett. 2007;91:153105.
  • Avsar A, Vera-Marun IJ, Tan JY, et al. Electronic spin transport in dual-gated bilayer graphene. Npg Asia Mater. 2016;8:e274–e274.
  • Yan W, Txoperena O, Llopis R, et al. A two-dimensional spin field-effect switch. Nat Commun. 2016;7:13372.
  • Dankert A, Dash SP. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat Commun. 2017;8:16093.
  • Gong S-J, Gong C, Sun -Y-Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. PNAS. 2018;115:8511–8516.
  • Wu B, Quhe R, Yang J, et al. High-Performance Spin Filters and Spin Field Effect Transistors Based on Bilayer VSe2. Adv Theory Simul. 2021;4:2000238.
  • Jiang S, Li L, Wang Z, et al. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat Electron. 2019;2(4):159–163.
  • Dery H, Cywiński L, Sham LJ. Spin transference and magnetoresistance amplification in a transistor. Phys Rev B. 2006;73:161307.
  • Wen H, Dery H, Amamou W, et al. Experimental demonstration of xor operation in graphene magnetologic gates at room temperature. Phys Rev Appl. 2016;5:044003.
  • Dery H, Wu H, Ciftcioglu B, et al. Nanospintronics based on magnetologic gates. IEEE Trans Elec Dev. 2012;59:259–262.
  • Dery H, Dalal P, Cywiński Ł, et al. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature. 2007;447:573–576.
  • Kim WY, Kim H-D, Kim -T-T, et al. Graphene–ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations. Nat Commun. 2016;7:10429.
  • Zeng M, Shen L, Su H, et al. Graphene-based spin logic gates. Appl Phys Lett. 2011;98:092110.
  • Su G, Wu X, Tong W, et al. Two-dimensional layered materials-based spintronics. SPIN. 2015;05:1540011.
  • Wang XL. Proposal for a new class of materials: spin gapless semiconductors. Phys Rev Lett. 2008;100:156404.
  • Wang X-L. Dirac spin-gapless semiconductors: promising platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects. Nat Sci Rev. 2017;4:252–257.
  • Şaşıoğlu E, Aull T, Kutschabsky D, et al. Half-metal–spin-gapless-semiconductor junctions as a route to the ideal diode. Phys Rev Appl. 2020;14:014082.
  • Şaşıoğlu E, Blügel S, Mertig I. Proposal for reconfigurable magnetic tunnel diode and transistor. ACS Appl Electron Mater. 2019;1:1552–1559.
  • Eisenstein JP, Pfeiffer LN, West KW. Quantum hall spin diode. Phys Rev Lett. 2017;118:186801.
  • Yao Y, Zhan X, Sendeku MG, et al. Recent progress on emergent two-dimensional magnets and heterostructures. Nanotechnology. 2021;32:472001.
  • Nadeem M, Di Bernardo I, Wang X, et al. Overcoming Boltzmann’s Tyranny in a transistor via the topological quantum field. Effect Nano Lett. 2021;21:3155–3161.
  • Wang X, Du K, Liu YYF, et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 2016;3:031009.
  • Lee J-U, Lee S, Ryoo JH, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 2016;16:7433–7438.
  • O’Hara DJ, Zhu T, Trout AH, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018;18:3125–3131.
  • Zhang Z, Shang J, Jiang C, et al. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett. 2019;19:3138–3142.
  • Kim HH, Yang B, Li S, et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. PNAS. 2019;116:11131–11136.