5,202
Views
37
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Bio-interactive nanoarchitectonics with two-dimensional materials and environments

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 199-224 | Received 07 Feb 2022, Accepted 15 Mar 2022, Published online: 30 Mar 2022

References

  • Kimura K, Miwa K, Imada H, et al. Selective triplet exciton formation in a single molecule. Nature. 2019;570(7760):210–224. DOI:10.1038/s41586-019-1284-2
  • Gohda Y. First-Principles determination of intergranular atomic arrangements and magnetic properties in rare-earth permanent magnets. Sci Technol Adv Mater. 2021;22(1):113–123.
  • Yamamoto HM. Phase-Transition devices based on organic Mott insulators. Bull Chem Soc Jpn. 2021;94(10):2505–2539.
  • Trinh TT, Kim J, Sato R, et al. Synthesis of mesoscopic particles of multi-component rare earth permanent magnet compounds. Sci Technol Adv Mater. 2021;22(1):37–54. DOI:10.1080/14686996.2020.1862630
  • Kasuya N, Tsurumi J, Okamoto T, et al. Two-Dimensional hole gas in organic semiconductors. Nat Mater. 2021;20(10):1401–1406. DOI:10.1038/s41563-021-01074-4
  • Hosono N, Uemura T. Development of functional materials via polymer encapsulation into metal–organic frameworks. Bull Chem Soc Jpn. 2021;94(8):2139–2148.
  • Shimizu T, Lungerich D, Stuckner J, et al. Real-Time video imaging of mechanical motions of a single molecular shuttle with sub-millisecond sub-angstrom precision. Bull Chem Soc Jpn. 2020;93(9):1079–1085. DOI:10.1246/bcsj.20200134
  • Kamei K, Shimizu T, Harano K, et al. Aryl radical addition to curvatures of carbon nanohorns for single-molecule-level molecular imaging. Bull Chem Soc Jpn. 2020;93(12):1603–1608. DOI:10.1246/bcsj.20200232
  • Kratish Y, Nakamuro T, Liu Y, et al. Synthesis and characterization of a well-defined carbon nanohorn-supported molybdenum dioxo catalyst by SMART-EM imaging surface structure at the atomic level. Bull Chem Soc Jpn. 2021;94(2):427–432. DOI:10.1246/bcsj.20200299
  • Kazuma E. Real-Space studies of plasmon-induced dissociation reactions with an STM. Bull Chem Soc Jpn. 2020;93(12):1552–1557.
  • Xu X, Kinikar A, Di Giovannantonio M, et al. On-Surface synthesis of dibenzohexacenohexacene and dibenzopentaphenoheptaphene. Bull Chem Soc Jpn. 2021;94(3):997–999. DOI:10.1246/bcsj.20200382
  • Xu X, Müllen K, Narita A. Syntheses and characterizations of functional polycyclic aromatic hydrocarbons and graphene nanoribbons. Bull Chem Soc Jpn. 2020;93(4):490–506.
  • Kawai S, Krejčí O, Nishiuchi T, et al. Three-Dimensional graphene nanoribbons as a framework for molecular assembly and local probe chemistry. Sci Adv. 2020;6(9):eaay8913. DOI:10.1126/sciadv.aay8913
  • Waser R, Aono M. Nanoionics-Based resistive switching memories. Nat Mater. 2007;6(11):833–840.
  • Ohno T, Hasegawa T, Tsuruoka T, et al. Short-Term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater. 2011;10(8):591–595. DOI:10.1038/nmat3054
  • Nakaya M, Tsukamoto S, Kuwahara Y, et al. Molecular scale control of unbound and bound C60 for topochemical ultradense data storage in an ultrathin C60 film. Adv Mater. 2010;22(14):1622–1625. DOI:10.1002/adma.200902960
  • Nakaya M, Aono M, Nakayama T. Ultrahigh-Density data storage into thin films of fullerene molecules. Jpn J Appl Phys. 2016;55(11):1102B4.
  • Yamashita M. Next generation multifunctional nano-science of advanced metal complexes with quantum effect and nonlinearity. Bull Chem Soc Jpn. 2021;94(1):209–264.
  • Povie G, Segawa Y, Nishihara T, et al. Synthesis of a carbon nanobelt. Science. 2017;356:172–175.
  • Sun Z, Ikemoto K, Fukunaga TM, et al. Finite phenine nanotubes with periodic vacancy defects. Science. 2019;363(6423):151–155. DOI:10.1126/science.aau5441
  • Stockdale TP, Lam NYS, Anketell MJ, et al. The stereocontrolled total synthesis of polyketide natural products: a thirty-year journey. Bull Chem Soc Jpn. 2021;94(2):713–731. DOI:10.1246/bcsj.20200309
  • van Bommel KJC, Friggeri A, Shinkai S. Organic templates for the generation of inorganic materials. Angew Chem Int Ed. 2003;42(9):980–999.
  • Hashim PK, Bergueiro J, Meijer EW, et al. Supramolecular polymerization: a conceptual expansion for innovative materials. Prog Polym Sci. 2020;105:101250.
  • Percec V, Xiao Q. Helical self-organizations and emerging functions in architectures, biological and synthetic macromolecules. Bull Chem Soc Jpn. 2021;94(3):900–928.
  • Lee JSM, Otake K, Kitagawa S. Transport properties in porous coordination polymers. Coord Chem Rev. 2020;421:213447.
  • Hanikel N, Prévot MS, Yaghi OM. MOF water harvesters. Nat Nanotechnol. 2020;15(5):348–355.
  • Hosono N. Design of porous coordination materials with dynamic properties. Bull Chem Soc Jpn. 2021;94(1):60–69.
  • Yew YP, Shameli K, Miyake M, et al. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: a review. Arab J Chem. 2020;13(1):2287–2308. DOI:10.1016/j.arabjc.2018.04.013
  • Sasaki J, Abe GL, Li A, et al. Large three-dimensional cell constructs for tissue engineering. Sci Technol Adv Mater. 2021;22(1):571–582. DOI:10.1080/14686996.2021.1945899
  • Kamimura YR, Kanai M. Chemical insights into liquid-liquid phase separation in molecular biology. Bull Chem Soc Jpn. 2021;94(3):1045–1058.
  • Shawky A, Mohamed RM, Mkhalid IA, et al. One-Pot synthesis of Mn3O4-coupled Ag2WO4 nanocomposite photocatalyst for enhanced photooxidative desulfurization of thiophene under visible light irradiation. Appl Nanosci. 2020;10(5):1545–1554. DOI:10.1007/s13204-019-01212-0
  • Li Y, Henzie J, Park T, et al. Fabrication of flexible microsupercapacitors with Binder-Free ZIF-8 derived carbon films via electrophoretic deposition. Bull Chem Soc Jpn. 2020;93(1):176–181. DOI:10.1246/bcsj.20190298
  • Takano S, Tsukuda T. Chemically modified gold/silver superatoms as artificial elements at nanoscale: design principles and synthesis challenges. J Am Chem Soc. 2021;143(4):1683–1698.
  • Yoon HJ, Kwak SS, Kim SM, et al. Aim high energy conversion efficiency in triboelectric nanogenerators. Sci Technol Adv Mater. 2020;21(1):683–688. DOI:10.1080/14686996.2020.1800366
  • Wang Z, Song H, Liu H, et al. Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew Chem Int Ed. 2020;59(21):8016–8035. DOI:10.1002/anie.201907443
  • Sakaushi K. Science of electrode processes in the 21st century: fundamental understanding of microscopic mechanisms towards advancing electrochemical technologies. Bull Chem Soc Jpn. 2021;94(10):2423–2434.
  • Nakayama SF, Yoshikane M, Onoda Y, et al. Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment. TrAc-Trends Anal Chem. 2019;121:115410.
  • Johnson AC, Jin X, Nakada N. Learning from the past and considering the future of chemicals in the environment. Science. 2010;367(6476):384–387.
  • Singh B, Na J, Konarova M, et al. Functional mesoporous silica nanomaterials for catalysis and environmental applications. Bull Chem Soc Jpn. 2020;93(12):1459–1496. DOI:10.1246/bcsj.20200136
  • Mi P, Cabral H, Kataoka K. Ligand-Installed nanocarriers toward precision therapy. Adv Mater. 2020;32(13):1902604.
  • Saleem M, Rasheed S, Yougen C. Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration. Sci Technol Adv Mater. 2020;21(1):242–266.
  • Podder A, Lee HJ, Kim BH. Fluorescent nucleic acid systems for biosensors. Bull Chem Soc Jpn. 2021;94(3):1010–1035.
  • Miyasaka T, Kulkarni A, Kim GM, et al. Perovskite solar cells: can we go organic-free, lead-free, and dopant-free? Adv Energy Mater. 2020;10(13):1902500. DOI:10.1002/aenm.201902500
  • Al-Attafi K, Nattestad A, Qutaish H, et al. Solvothermally synthesized anatase TiO2 nanoparticles for photoanodes in dye-sensitized solar cells. Sci Technol Adv Mater. 2021;22(1):100–112. DOI:10.1080/14686996.2021.1873059
  • Matsuo Y. Creation of highly efficient and durable organic and perovskite solar cells using nanocarbon materials. Bull Chem Soc Jpn. 2021;94(3):1080–1089.
  • Guo D, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science. 2016;351(6271):61–365. DOI:10.1126/science.aad0832
  • Yoshimune W, Harada M. Impact of nonadsorbed ionomer on viscosity of catalyst inks for polymer electrolyte fuel cells. Bull Chem Soc Jpn. 2020;93(2):302–307.
  • Kodama K, Nagai T, Kuwaki A, et al. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat Nanotechnol. 2021;16(2):140–147. DOI:10.1038/s41565-020-00824-w
  • Hosaka T, Kubota K, Hameed AS, et al. Research development on K-ion batteries. Chem Rev. 2020;120(14):6358–6466. DOI:10.1021/acs.chemrev.9b00463
  • Liu J, Gu T, Sun X, et al. Synthesis of MnO/C/Co3O4 nanocomposites by a Mn2+-oxidizing bacterium as a biotemplate for lithium-ion batteries. Sci Technol Adv Mater. 2021;22(1):429–440. DOI:10.1080/14686996.2021.1927175
  • Li P, Li C, Guo X, et al. Metal-Iodine and metal-bromine batteries: a review. Bull Chem Soc Jpn. 2021;94(8):2036–2042. DOI:10.1246/bcsj.20210182
  • Maeda K. Z-Scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 2013;3(7):1486–1503.
  • Wang Q, Hisatomi T, Jia Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater. 2016;15(6):611–615. DOI:10.1038/nmat4589
  • Lang X, Gopalan S, Fu W, et al. Photocatalytic water splitting utilizing electrospun semiconductors for solar hydrogen generation: fabrication, modification and performance. Bull Chem Soc Jpn. 2021;94(1):8–20. DOI:10.1246/bcsj.20200175
  • Shrestha RG, Maji S, Shrestha LK, et al. Nanoarchitectonics of nanoporous carbon materials in supercapacitors applications. Nanomaterials. 2020;10(4):639. DOI:10.3390/nano10040639
  • Raman V, Rhee D, Selvaraj AR, et al. High-Performance flexible transparent micro-supercapacitors from nanocomposite electrodes encapsulated with solution processed MoS2 nanosheets. Sci Technol Adv Mater. 2021;22(1):875–884. DOI:10.1080/14686996.2021.1978274
  • Liu H, Chen W, Zhang R, et al. Naturally O-N-S Co-doped carbon with multiscale pore architecture derived from lotus leaf stem for high-performance supercapacitors. Bull Chem Soc Jpn. 2021;94(6):1705–1714. DOI:10.1246/bcsj.20210027
  • Mori T, Akamatsu M, Okamoto K, et al. Micrometer-Level naked-eye detection of caesium particulates in the solid state. Sci Technol Adv Mater. 2013;14(1):015002. DOI:10.1088/1468-6996/14/1/015002
  • Kitamura K, Sadamasu K, Muramatsu M. Efficient detection of SARS-CoV-2 RNA in the solid fraction of wastewater. Sci Total Environ. 2021;763:144587.
  • Sasaki Y, Lyu X, Tang W, et al. Polythiophene-Based chemical sensors: toward on-site supramolecular analytical devices. Bull Chem Soc Jpn. 2021;94(11):2613–2622. DOI:10.1246/bcsj.20210265
  • Robinson MR, Coustel R, Abdelmoula M, et al. As(V) and As(III) sequestration by starch functionalized magnetite nanoparticles: influence of the synthesis route onto the trapping efficiency. Sci Technol Adv Mater. 2020;21(1):524–539. DOI:10.1080/14686996.2020.1782714
  • Xu GR, An ZH, Xu K, et al. Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: the cutting-edge study on designs, synthesis, and applications. Coord Chem Rev. 2021;427:213554.
  • Singh G, Lee JM, Kothandam G, et al. A review on the synthesis and applications of nanoporous carbons for the removal of complex chemical contaminants. Bull Chem Soc Jpn. 2021;94(4):1232–1257. DOI:10.1246/bcsj.20200379
  • Kawai F, Kawabata T, Oda M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl Microbiol Biotechnol. 2019;103(11):4253–4268.
  • Hunge YM, Yadav AA, Khan S, et al. Photocatalytic degradation of bisphenol a using titanium dioxide@nanodiamond composites under UV light illumination. J Colloid Interface Sci. 2021;582:1058–1066.
  • Yuan G, Li F, Li K, et al. Research progress on photocatalytic reduction of Cr(VI) in polluted water. Bull Chem Soc Jpn. 2021;94(4):1142–1155. DOI:10.1246/bcsj.20200317
  • Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. J Control Release. 2014;190:465–476.
  • Cui G, Zhao K, You K, et al. Synthesis and characterization of phenylboronic acid-containing polymer for glucose-triggered drug delivery. Sci Technol Adv Mater. 2020;21(1):1–10. DOI:10.1080/14686996.2019.1700394
  • Castanheira EJ, Correia TR, Rodrigues JMM, et al. Novel biodegradable laminarin microparticles for biomedical applications. Bull Chem Soc Jpn. 2020;93(6):713–719. DOI:10.1246/bcsj.20200034
  • Asamitsu S, Obata S, Yu Z, et al. Recent progress of targeted G-quadruplex-preferred ligands toward cancer therapy. Molecules. 2019;24:429.
  • Liao W, Du Y, Zhang C, et al. Exosomes: the next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater. 2019;86:1–14.
  • Parthiban V, Yen PYM, Uruma Y, et al. Designing synthetic glycosylated photosensitizers for photodynamic therapy. Bull Chem Soc Jpn. 2020;93(8):978–984. DOI:10.1246/bcsj.20200079
  • Ariga K. Nanoarchitectonics: what’s coming next after nanotechnology? Nanoscale Horiz. 2021;6(5):364–378.
  • Ariga K, Ji Q, Nakanishi W, et al. Nanoarchitectonics: a new materials horizon for nanotechnology. Mater Horiz. 2015;2(4):406–413. DOI:10.1039/C5MH00012B
  • Ariga K, Minami K, Ebara M, et al. What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polym J. 2016;48(4):371–389. DOI:10.1038/pj.2016.8
  • Feynman RP. There’s plenty of room at the bottom. Eng Sci. 1960;23:22–36.
  • Roukes M. Plenty of room, indeed. Sci Am. 2001;285(3):48–51.
  • Ariga K, Ji Q, Hill JP, et al. Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Mater. 2012;4(5):e17. DOI:10.1038/am.2012.30
  • Ariga K. Nanoarchitectonics revolution and evolution: from small science to big technology. Small Sci. 2021;1(1):2000032.
  • Ariga K, Nishikawa M, Mori T, et al. Self-Assembly as a key player for materials nanoarchitectonics. Sci Technol Adv Mater. 2019;20(1):51–95. DOI:10.1080/14686996.2018.1553108
  • Song J, Jia X, Ariga K. Methods with nanoarchitectonics for small molecules and nanostructures to regulate living cells. Small Methods. 2020;4:2000500.
  • Ariga K, Li J, Fei J, et al. Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv Mater. 2016;28(6):1251–1286. DOI:10.1002/adma.201502545
  • Tirayaphanitchkul C, Imwiset K, Ogawa M. Nanoarchitectonics through organic modification of oxide based layered materials; concepts, methods and functions. Bull Chem Soc Jpn. 2021;94(2):678–693.
  • Boukhalfa N, Darder M, Boutahala M, et al. Composite nanoarchitectonics: alginate beads encapsulating sepiolite magnetite/Prussian blue for removal of cesium ions from water. Bull Chem Soc Jpn. 2021;94(1):122–132. DOI:10.1246/bcsj.20200247
  • Ariga K, Shionoya M. Nanoarchitectonics for coordination asymmetry and related chemistry. Bull Chem Soc Jpn. 2021;94(3):839–859.
  • Liang X, Li L, Tang J, et al. Dynamism of supramolecular DNA/RNA nanoarchitectonics: from interlocked structures to molecular machines. Bull Chem Soc Jpn. 2020;93(4):581–603. DOI:10.1246/bcsj.20200012
  • Ariga K. There’s still plenty of room at the bottom: if nanoarchitectonics reaches its full potential, we could precisely build any material structure. Chemistry World. 2021;18:5.
  • Ramanathan M, Shrestha LK, Mori T, et al. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. Phys Chem Chem Phys. 2013;15(26):10580–10611. DOI:10.1039/c3cp50620g
  • Pham TA, Qamar A, Dinh T. Nanoarchitectonics for wide bandgap semiconductor nanowires: toward the next generation of nanoelectromechanical systems for environmental monitoring. Adv Sci. 2020;7(21):2001294.
  • Rydzek G, Ji Q, Li M, et al. Electrochemical nanoarchitectonics and layer-by-layer assembly: from basics to future. Nano Today. 2015;10:138–167.
  • Ariga K, Mori T, Kitao T, et al. Supramolecular chiral nanoarchitectonics. Adv Mater. 2020;32(41):1905657. DOI:10.1002/adma.201905657
  • Abe H, Liu J, Ariga K. Catalytic nanoarchitectonics for environmentally compatible energy generation. Mater Today. 2019;19(1):12–18.
  • Wang C, Wang H, Na J, et al. 0D–1D hybrid nanoarchitectonics: tailored design of FeCo@N–C yolk–shell nanoreactors with dual sites for excellent Fenton-like catalysis. Chem Sci. 2021;12(46):15418–15422. DOI:10.1039/D1SC05000A
  • Ishihara S, Labuta J, Van Rossom W, et al. Porphyrin-Based sensor nanoarchitectonics in diverse physical detection modes. Phys Chem Chem Phys. 2014;16(21):9713–9746. DOI:10.1039/c3cp55431g
  • Liu J, Zhou H, Yang W, et al. Soft nanoarchitectonics for enantioselective biosensing. Acc Chem Res. 2020;53(3):644–653. DOI:10.1021/acs.accounts.9b00612
  • Ariga K, Ito M, Mori T, et al. Atom/molecular nanoarchitectonics for devices and related applications. Nano Today. 2019;28:100762.
  • Terabe K, Tsuchiya T, Tsuruoka T. A variety of functional devices realized by ionic nanoarchitectonics, complementing electronics components. Adv Electron Mater. 2021;2100645.
  • Kim J, Kim JH, Ariga K. Redox-Active polymers for energy storage nanoarchitectonics. Joule. 2017;1:739–768.
  • Giussi JM, Cortez ML, Marmisollé WA, et al. Practical use of polymer brushes in sustainable energy applications: interfacial nanoarchitectonics for high-efficiency devices. Chem Soc Rev. 2019;48(3):814–849. DOI:10.1039/C8CS00705E
  • Ariga K, Ishihara S, Abe H, et al. Materials nanoarchitectonics for environmental remediation and sensing. J Mater Chem. 2012;22(6):2369–2377. DOI:10.1039/C1JM14101E
  • Sciortino F, Sanchez-Ballester NM, Mir SH, et al. Functional elastomeric copolymer membranes designed by nanoarchitectonics approach for methylene blue removal. J Inorg Organomet Polym. 2021;31(5):1967–1977. DOI:10.1007/s10904-021-01971-w
  • Ariga K, Ji Q, Mori T, et al. Enzyme nanoarchitectonics: organization and device application. Chem Soc Rev. 2013;42(15):6322–6345. DOI:10.1039/c2cs35475f
  • Ariga K, Fakhrullin R. Nanoarchitectonics on living cells. RSC Adv. 2021;11(31):18898–18914.
  • Banerjee S, Pillai J. Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs. Expert Opin Drug Metab Toxicol. 2019;15(6):499–515.
  • Sharma S, Masud MK, Kaneti YV, et al. Extracellular vesicle nanoarchitectonics for novel drug delivery applications. Small. 2021;17:2102220.
  • Aono M, Ariga K. The Way to nanoarchitectonics and the way of nanoarchitectonics. Adv Mater. 2016;28(6):989–992.
  • Turlier H, Betz T. Unveiling the active nature of living-membrane fluctuations and mechanics. Annu Rev Condens Matter Phys. 2019;10(1):213–232.
  • Huber GA, McCammon JA. Brownian dynamics simulations of biological molecules. Trends Chem. 2019;1(8):727–738.
  • Ariga K, Jia X, Song J, et al. Nanoarchitectonics beyond self-assembly: challenges to create bio-like hierarchic organization. Angew Chem Int Ed. 2020;59(36):15424–15446. DOI:10.1002/anie.202000802
  • Ariga K, Lee MV, Mori T, et al. Two-Dimensional nanoarchitectonics based on self-assembly. Adv Colloid Interface Sci. 2010;154(1–2):20–29. DOI:10.1016/j.cis.2010.01.005
  • Govindaraju T, Avinash MB. Two-Dimensional nanoarchitectonics: organic and hybrid materials. Nanoscale. 2012;4:6102–6117.
  • Xu J, Zhang J, Zhang W, et al. Interlayer nanoarchitectonics of two-dimensional transition-metal dichalcogenides nanosheets for energy storage and conversion applications. Adv Energy Mater. 2017;7(23):1700571. DOI:10.1002/aenm.201700571
  • Toko K, Murata H. Layer exchange synthesis of multilayer graphene. Nanotechnology. 2021;32:472005.
  • Matsumoto I, Sekiya R, Haino T. Nanographenes from distinct carbon sources. Bull Chem Soc Jpn. 2021;94(4):1394–1399.
  • Rahmanian E, Malekfar R, Pumera M. Nanohybrids of two-dimensional transition-metal dichalcogenides and titanium dioxide for photocatalytic applications. Chem: Eur J. 2018;24(1):18–31.
  • Sridharan K, Shenoy S, Kumar SG, et al. Advanced two-dimensional heterojunction photocatalysts of stoichiometric and non-stoichiometric bismuth oxyhalides with graphitic carbon nitride for sustainable energy and environmental applications. Catalysts. 2021;11(4):426. DOI:10.3390/catal11040426
  • He Y, Zhang Z, Chen G, et al. Silicon nanosheets derived from silicate minerals: controllable synthesis and energy storage application. Nanoscale. 2021;13(44):18410–18420. DOI:10.1039/D1NR04667E
  • Yasutake H, Islam MS, Rahman MA, et al. High proton conductivity from titanium oxide nanosheets and their variation based on crystal phase. Bull Chem Soc Jpn. 2021;94(7):1840–1845. DOI:10.1246/bcsj.20210139
  • Nagao Y. Progress on highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. Sci Technol Adv Mater. 2020;21(1):79–91.
  • Kim W, Hwang W, Kim NH, et al. Permselective two-dimensional polymer film-based chemical sensors. Bull Chem Soc Jpn. 2021;94(3):869–871. DOI:10.1246/bcsj.20200346
  • Makiura R, Motoyama S, Umemura Y, et al. Surface nano-architecture of a metal–organic framework. Nature Mater. 2010;9(7):565–571. DOI:10.1038/nmat2769
  • Takahashi M. Oriented films of metal-organic frameworks on metal hydroxides via heteroepitaxial growth. Bull Chem Soc Jpn. 2021;94(11):2602–2612.
  • Ariga K. Don’t forget Langmuir–Blodgett films 2020: interfacial nanoarchitectonics with molecules, materials, and living objects. Langmuir. 2020;36(26):7158–7180.
  • Ariga K, Lvov Y, Decher G. There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Phys Chem Chem Phys. in press. DOI:10.1039/D1CP04669A
  • Ariga K. Langmuir-Blodgett nanoarchitectonics, out of the box. Acc Mater Res. in press. DOI:10.1021/accountsmr.1c00240
  • Tajima T, Okabe S, Takaguchi Y. Photoinduced electron transfer in a MoS2 /anthracene mixed-dimensional heterojunction in aqueous media. Bull Chem Soc Jpn. 2020;93(6):745–750.
  • Baskar AV, Ruban AM, Davidraj JM, et al. Single-Step synthesis of 2D mesoporous C60/carbon hybrids for supercapacitor and Li-ion battery applications. Bull Chem Soc Jpn. 2021;94:133–140.
  • Bouša D, Marvan P, Kosina J, et al. Picric acid violet light assisted photodegradation mediated by germanene-based materials. Bull Chem Soc Jpn. 2021;94(6):1695–1701. DOI:10.1246/bcsj.20210056
  • Chen J, Hu R, Zhu H, et al. Supramolecule stripped MoS2 nanosheets for enhanced surface plasmon resonance spectroscopy application. Bull Chem Soc Jpn. 2021;94(10):2402–2409. DOI:10.1246/bcsj.20210241
  • Eom S, Choi G, Nakamura H, et al. 2-Dimensional nanomaterials with imaging and diagnostic functions for nanomedicine; a review. Bull Chem Soc Jpn. 2020;93(1):1–12. DOI:10.1246/bcsj.20190270
  • Taniguchi H, Akiyama K, Fujie T. Biopotential measurement of plant leaves with ultra-light and flexible conductive polymer nanosheets. Bull Chem Soc Jpn. 2020;93(8):1007–1013.
  • Li BL, Li R, Zou HL, et al. Engineered functionalized 2D nanoarchitectures for stimuli-responsive drug delivery. Mater Horiz. 2020;7(2):455–469. DOI:10.1039/C9MH01300H
  • Oaki Y, Igarashi Y. Materials informatics for 2D materials combined with sparse modeling and chemical perspective: toward small-data-driven chemistry and materials science. Bull Chem Soc Jpn. 2021;94(10):2410–2422.
  • Ariga K, Mori T, Li J. Langmuir nanoarchitectonics from basic to frontier. Langmuir. 2019;35:3585–3599.
  • Ariga K, Ishii M, Mori T. 2D nanoarchitectonics: soft interfacial media as playgrounds for microobjects, molecular machines, and living cells. Chem Eur J. 2020;26(29):6461–6472.
  • Ariga K, Yamauchi Y, Mori T, et al. 25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv Mater. 2013;25(45):6477–6512. DOI:10.1002/adma.201302283
  • Ariga K, Mori T, Hill JP. Mechanical control of nanomaterials and nanosystems. Adv Mater. 2012;24(2):158–176.
  • Ariga K. The evolution of molecular machines through interfacial nanoarchitectonics: from toys to tools. Chem Sci. 2020;11(39):10594–10604.
  • Mori T, Okamoto K, Endo H, et al. Mechanical tuning of molecular recognition to discriminate the single-methyl-group difference between thymine and uracil. J Am Chem Soc. 2010;132(37):12868–12870. DOI:10.1021/ja106653a
  • Ariga K. Molecular tuning nanoarchitectonics for molecular recognition and molecular manipulation. ChemNanomat. 2020;6(6):870–880.
  • Ariga K, Kunitake T. Molecular recognition at air−water and related interfaces: complementary hydrogen bonding and multisite interaction. Acc Chem Res. 1998;31(6):371–378.
  • Ariga K, Ito H, Hill JP, et al. Molecular recognition: from solution science to nano/materials technology. Chem Soc Rev. 2012;41(17):5800–5835. DOI:10.1039/c2cs35162e
  • Onda M, Yoshihara K, Koyano H, et al. Molecular recognition of nucleotides by the guanidinium unit at the surface of aqueous micelles and bilayers. a comparison of microscopic and macroscopic interfaces. J Am Chem Soc. 1996;18:8524–8530.
  • Ariga K. Molecular recognition at the air–water interface: nanoarchitectonic design and physicochemical understanding. Phys Chem Chem Phys. 2020;22(43):24856–24869.
  • Song J, Jia X, Ariga K. Interfacial nanoarchitectonics for responsive cellular biosystems. Mater Today Bio. 2020;8:100075.
  • Ariga K, Tsai KC, Shrestha LK, et al. Life science nanoarchitectonics at interfaces. Mater Chem Front. 2021;5(3):1018–1032. DOI:10.1039/D0QM00615G
  • Kondoh M, Moritani H, Ishibashi T. Observation of translational diffusion in a planer supported lipid bilayer membrane by total internal reflection-transient grating method. Bull Chem Soc Jpn. 2020;93(5):671–675.
  • Inoue K, Fujimoto K, Takada C, et al. Effect of head group on low-level ozone oxidation of unsaturated phospholipids on a water surface. Bull Chem Soc Jpn. 2021;94(2):486–489. DOI:10.1246/bcsj.20200250
  • Makiura R, Niwa A, Eimura H, et al. Air/water interfacial monolayer assembly of peptide-conjugated liquid-crystalline molecules. Bull Chem Soc Jpn. 2021;94(8):2060–2067. DOI:10.1246/bcsj.20210166
  • Kinjo T, Yoneyama H, Umemoto K. Molecular dynamics simulation of fracture at a polymer and metal oxide joining interface. Bull Chem Soc Jpn. 2021;94(5):1563–1570.
  • Yonamine Y, Cervantes-Salguero K, Minami K, et al. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air–water interface. Phys Chem Chem Phys. 2016;18(18):12576–12581. DOI:10.1039/C6CP01586G
  • Sakakibara K, Chithra P, Das B, et al. Aligned 1-D Nanorods of a π-Gelator exhibit molecular orientation and excitation energy transport different from entangled fiber networks. J Am Chem Soc. 2014;136(24):8548–8551. DOI:10.1021/ja504014k
  • Mori T, Tanaka H, Dalui A, et al. Carbon nanosheets by morphology-retained carbonization of two-dimensional assembled anisotropic carbon nanorings. Angew Chem Int Ed. 2018;57(31):9679–9683. DOI:10.1002/anie.201803859
  • Ito M, Yamashita Y, Tsuneda Y, et al. 100 °C-Langmuir–Blodgett method for fabricating highly oriented, ultrathin films of polymeric semiconductors. ACS Appl Mater Interfaces. 2020;12(50):56522–56529. DOI:10.1021/acsami.0c18349
  • Ito M, Yamashita Y, Mori T, et al. Hyper 100 °C Langmuir−Blodgett (Langmuir−Schaefer) technique for organized ultrathin film of polymeric semiconductors. Langmuir. in press. DOI:10.1021/acs.langmuir.1c02596.
  • Bai B, Wang D, Wan LJ. Synthesis of covalent organic framework films at interfaces. Bull Chem Soc Jpn. 2021;94(3):1090–1098.
  • Maji S, Shrestha RG, Lee J, et al. Macaroni fullerene crystals-derived mesoporous carbon tubes as a high rate performance supercapacitor electrode material. Bull Chem Soc Jpn. 2021;94(5):1502–1509. DOI:10.1246/bcsj.20210059
  • Tameike M, Niidome T, Niidome Y, et al. Novel Photoluminescent gold complexes prepared at Octanethiol–water interfaces: control of optical properties by addition of silver ions. Bull Chem Soc Jpn. 2021;94(7):1875–1881. DOI:10.1246/bcsj.20210064
  • Paris JL, Vallet-Regí M. Ultrasound-Activated nanomaterials for therapeutics. Bull Chem Soc Jpn. 2020;93(2):220–229.
  • Arora H, Ramesh M, Rajasekhar K, et al. Molecular tools to detect alloforms of Aβ and Tau: implications for multiplexing and multimodal diagnosis of Alzheimer’s disease. Bull Chem Soc Jpn. 2020;93(4):507–546. DOI:10.1246/bcsj.20190356
  • Pang P, Lai Y, Zhang Y, et al. Recent advancement of biosensor technology for the detection of microcystin-LR. Bull Chem Soc Jpn. 2020;93(5):637–646. DOI:10.1246/bcsj.20190365
  • Luo X, Zhu C, Saito M, et al. Cauliflower-Like nanostructured localized surface plasmon resonance biosensor chip for cytokine detection. Bull Chem Soc Jpn. 2020;93(9):1121–1126. DOI:10.1246/bcsj.20200088
  • Liang X, Liu M, Komiyama M. Recognition of target site in various forms of DNA and RNA by peptide nucleic acid (PNA): from fundamentals to practical applications. Bull Chem Soc Jpn. 2021;94(6):1737–1756.
  • Ma R, Sasaki T. Two-Dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc Chem Res. 2015;48(1):136–143.
  • Li SL, Tsukagoshi K, Orgiu E, et al. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem Soc Rev. 2016;45(1):118–151. DOI:10.1039/C5CS00517E
  • Liu B, Zhang JG, Shen G. Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. Nano Today. 2016;11(1):82–97.
  • Zang X, Wang T, Han Z, et al. Recent advances of 2D nanomaterials in the electrode materials of lithium-ion batteries. Nano. 2019;14(02):1930001. DOI:10.1142/S1793292019300019
  • Jiang H, Ren D, Wang H, et al. 2D Monolayer MoS2-Carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv Mater. 2015;27(24):3687–3695. DOI:10.1002/adma.201501059
  • Tang C, Zhang Q, Zhao MQ, et al. Nitrogen-Doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv Mater. 2014;26(35):6100–6105. DOI:10.1002/adma.201401243
  • Zhu Y, Peng L, Fang Z, et al. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv Mater. 2018;30(15):1706347. DOI:10.1002/adma.201706347
  • Yang Y, Wu M, Zhu X, et al. 2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. Chin Chem Lett. 2019;30(12):2065–2088. DOI:10.1016/j.cclet.2019.11.001
  • Zheng B, Mao L, Shi J, et al. Facile layer-by-layer self-assembly of 2D perovskite niobate and layered double hydroxide nanosheets for enhanced photocatalytic oxygen generation. Int J Hydrogen Energy. 2021;46(69):34276–34286. DOI:10.1016/j.ijhydene.2021.07.233
  • Rohaizad N, Mayorga-Martinez CC, Fojtů M, et al. Two-Dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev. 2021;50(1):619–657. DOI:10.1039/D0CS00150C
  • Bolotsky A, Butler D, Dong C, et al. Two-dimensional materials in biosensing and healthcare: from in vitro diagnostics to optogenetics and beyond. ACS Nano. 2019;13(9):9781–9810. DOI:10.1021/acsnano.9b03632
  • Nazari H, Heirani-Tabasi A, Hajiabbas M, et al. Incorporation of two-dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering. Polym Adv Technol. 2020;31(2):248–259. DOI:10.1002/pat.4765
  • Shah S, Yin PT, Uehara TM, et al. Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater. 2014;26(22):3673–3680. DOI:10.1002/adma.201400523
  • Yang B, Yin J, Chen Y, et al. 2D-Black-Phosphorus-Reinforced 3D-printed scaffolds: a stepwise countermeasure for osteosarcoma. Adv Mater. 2018;30(10):1705611. DOI:10.1002/adma.201705611
  • Miao Y, Shi X, Li Q, et al. Engineering natural matrices with black phosphorus nanosheets to generate multifunctional therapeutic nanocomposite hydrogels. Biomater Sci. 2019;7(10):4046–4059. DOI:10.1039/C9BM01072F
  • Tong L, Liao Q, Zhao Y, et al. Near-Infrared light control of bone regeneration with biodegradable photothermal osteoimplant. Biomaterials. 2019;193:1–13.
  • Li BL, Setyawati MI, Chen L, et al. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl Mater Interfaces. 2017;9(18):15286–15296. DOI:10.1021/acsami.7b02529
  • Paul A, Hasan A, Al Kindi H, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8:8050–8062.
  • He L, Nie T, Xia X, et al. Designing bioinspired 2D MoSe2 nanosheet for efficient photothermal-triggered cancer immunotherapy with reprogramming tumor-associated macrophages. Adv Funct Mater. 2019;29(30):1901240. DOI:10.1002/adfm.201901240
  • Zhu J, Sevencan C, Zhang M, et al. Increasing the potential interacting area of nanomedicine enhances its homotypic cancer targeting efficacy. ACS Nano. 2020;14(3):3259–3271. DOI:10.1021/acsnano.9b08798
  • Li X, Liu J, Zhang W, et al. Biogenic hybrid nanosheets activated photothermal therapy and promoted anti-PD-L1 efficacy for synergetic antitumor strategy. ACS Appl Mater Interfaces. 2020;12(26):29122–29132. DOI:10.1021/acsami.0c09111
  • Fang X, Wu X, Li Z, et al. Biomimetic anti-PD-1 peptide-loaded 2D FePSe3 nanosheets for efficient photothermal and enhanced immune therapy with multimodal MR/PA/thermal imaging. Adv Sci. 2021;8(2):2003041. DOI:10.1002/advs.202003041
  • Kurotobi K, Murata Y. A single molecule of water encapsulated in fullerene C60. Science. 2011;333:613–616.
  • Nakanishi W, Minami K, Shrestha LK, et al. Bioactive nanocarbon assemblies: nanoarchitectonics and applications. Nano Today. 2014;9(3):378–394. DOI:10.1016/j.nantod.2014.05.002
  • Sathish M, Miyazawa K. Size-tunable hexagonal fullerene (C60) nanosheets at the liquid−liquid interface. J Am Chem Soc. 2007;129(45):13816–13817.
  • Luo PW, Han HW, Yang CS, et al. Optogenetic modulation and reprogramming of bacteriorhodopsin-transfected human fibroblasts on self-assembled fullerene C60 nanosheets. Adv Biosyst. 2019;3(2):e1800254. DOI:10.1002/adbi.201800254
  • Miyazawa K. Synthesis of fullerene nanowhiskers using the liquid–liquid interfacial precipitation method and their mechanical, electrical and superconducting properties. Sci Technol Adv Mater. 2015;16(1):013502.
  • Miyazawa K, Kuwasaki Y, Obayashi A, et al. C60 nanowhiskers formed by the liquid–liquid interfacial precipitation method. J Mater Res. 2002;17(1):83–88. DOI:10.1557/JMR.2002.0014
  • Miyazawa K, Hamamoto K, Nagata S, et al. Structural investigation of the C60/C70 whiskers fabricated by forming liquid–liquid interfaces of toluene with dissolved C60/C70 and isopropyl alcohol. J Mater Res. 2003;18(5):1096–1103. DOI:10.1557/JMR.2003.0151
  • Nudejima S, Miyazawa K, Okuda-Shimazaki J, et al. Observation of phagocytosis of fullerene nanowhiskers by PMA-treated THP-1 cells. J Phys Conf Ser. 2009;159:012008.
  • Nudejima S, Miyazawa K, Okuda-Shimazaki J. Biodegradation of C60 fullerene nanowhiskers by macrophage-like cells. Adv Biomed Res. 2010;89–94.
  • Okuda-Shimazaki J, Nudejima S, Takaku S, et al. Effects of fullerene nanowhiskers on cytotoxicity and gene expression. Health. 2010;02(12):1456–1459. DOI:10.4236/health.2010.212216
  • Krishnan V, Kasuya K, Ji Q, et al. Vortex-Aligned fullerene nanowhiskers as a scaffold for orienting cell growth. ACS Appl Mater Interfaces. 2015;7(28):15667–15673. DOI:10.1021/acsami.5b04811
  • Hsieh FY, Shrestha LK, Ariga K, et al. Neural differentiation on aligned fullerene C60 nanowhiskers. Chem Commun. 2017;53(80):11024–11027. DOI:10.1039/C7CC06395D
  • Minami K, Kasuya Y, Yamazaki T, et al. Highly ordered 1D fullerene crystals for concurrent control of macroscopic cellular orientation and differentiation toward large-scale tissue engineering. Adv Mater. 2015;27(27):4020–4026. DOI:10.1002/adma.201501690
  • Song J, Jia X, Minami K, et al. Large-Area aligned fullerene nanocrystal scaffolds as culture substrates for enhancing mesenchymal stem cell self-renewal and multipotency. ACS Appl Nano Mater. 2020;3(7):6497–6506. DOI:10.1021/acsanm.0c00973
  • Rosenburg MD. Cell surface interactions and interfacial dynamics. In: Emmelot P, Muhlbock O, editors. Cellular control mechanisms and cancer. Amsterdam: Elsevier; 1964. p. 146–164.
  • King A, Mulligan B, Lowe K. Perfluorochemicals and cell culture. Nat Biotechnol. 1989;7(10):1037–1042.
  • Keese CR, Giaever I. Cell growth on liquid interfaces: role of surface active compounds. Proc Natl Acad Sci, USA. 1983;80(18):5622–5626.
  • van Wezel AL. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature. 1967;216:64–65.
  • Keese CR, Giaever I. Cell growth on liquid microcarriers. Science. 1983;219(4591):1448–1449.
  • Murasiewicz H, Nienow AW, Hanga MP, et al. Engineering considerations on the use of liquid/liquid two‐phase systems as a cell culture platform. J Chem Technol Biotechnol. 2017;92(7):1690–1698. DOI:10.1002/jctb.5166
  • Terada S, Sato M, Katayama R, et al. Recovery of intact membrane proteins from adherent animal cells grown in a liquid-liquid interface. J Ferment Bioeng. 1992;74(5):330–332. DOI:10.1016/0922-338X(92)90070-B
  • Shiba Y, Ohshima T, Sato M. Growth and morphology of anchorage-dependent animal cells in a liquid/liquid interface system. Biotechnol Bioeng. 1998;57(5):583–589.
  • Sobel S, Rosenberg MD. Characterization of cellular attachment and spreading molecules at liquid-liquid interfaces. Anal Biochem. 1984;140(2):486–489.
  • Sanfilippo B, Ciardiello F, Salomon DS, et al. Growth of cells on a perfluorocarbon-medium interphase: a quantitative assay for anchorage-independent cell growth. Vitr Cell Dev Biol. 1988;24:71–78.
  • Giaever I, Keese CR. Behavior of cells at fluid interfaces. Proc Natl Acad Sci, USA. 1983;80(1):219–222.
  • Ando J, Albelda SM, Levine EM. Culture of human adult endothelial cells on liquid-liquid interfaces: a new approach to the study of cell-matrix interactions. Vitr Cell Dev Biol - Anim. 1991;27:525–532.
  • Kwon YJ, Yu H, Peng CA. Enhanced retroviral transduction of 293 cells cultured on liquid-liquid interfaces. Biotechnol Bioeng. 2001;72(3):331–338.
  • Hanga MP, Murasiewicz H, Pacek AW, et al. Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. J Chem Technol Biotechnol. 2017;92(7):1577–1589. DOI:10.1002/jctb.5279m
  • Juszczak MT, Elsadig A, Kumar A, et al. Use of perfluorodecalin for pancreatic islet culture prior to transplantation: a liquid-liquid interface culture system—preliminary report. Cell Transplant. 2011;20(2):323–332. DOI:10.3727/096368910X514189
  • Pilarek M, Grabowska I, Ciemerych MA, et al. Morphology and growth of mammalian cells in a liquid/liquid culture system supported with oxygenated perfluorodecalin. Biotechnol Lett. 2013;35(9):1387–1394. DOI:10.1007/s10529-013-1218-2
  • Kong D, Nguyen KDQ, Megone W, et al. The culture of HaCat cells on liquid substrates is mediated by a mechanically strong liquid–liquid interface. Faraday Discuss. 2017;204:367–381.
  • Minami K, Mori T, Nakanishi W, et al. Suppression of myogenic differentiation of mammalian cells caused by fluidity of a liquid–liquid interface. ACS Appl Mater Interfaces. 2017;9(36):30553–30560. DOI:10.1021/acsami.7b11445
  • Pilarek M, Grabowska I, Senderek I, et al. Liquid perfluorochemical-supported hybrid cell culture system for proliferation of chondrocytes on fibrous polylactide scaffolds. Bioprocess Biosyst Eng. 2014;37(9):1707–1715. DOI:10.1007/s00449-014-1143-3
  • Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–689.
  • Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–183.
  • Hoffman BD, Grashoff C, Schwartz MA. Dynamic molecular processes mediate cellular mechanotransduction. Nature. 2011;475(7356):316–323.
  • Shih YRV, Tseng KF, Lai HY, et al. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res. 2011;26(4):730–738. DOI:10.1002/jbmr.278
  • Uto K, Mano SS, Aoyagi T, et al. Substrate fluidity regulates cell adhesion and morphology on poly(ε-caprolactone)-based materials. ACS Biomater Sci Eng. 2016;2(3):446–453. DOI:10.1021/acsbiomaterials.6b00058
  • Jia X, Minami K, Uto K, et al. Modulation of mesenchymal stem cells mechanosensing at fluid interfaces by tailored self-assembled protein monolayers. Small. 2019;15(5):1804640. DOI:10.1002/smll.201804640
  • Jia X, Minami K, Uto K, et al. Adaptive liquid interfacially assembled protein nanosheets for guiding mesenchymal stem cell fate. Adv Mater. 2020;32(4):1905942. DOI:10.1002/adma.201905942
  • Ariga K, Yamauchi Y. Nanoarchitectonics from atom to life. Chem – Asian J. 2020;15(6):718–728.
  • Fujinami M, Seino J, Nakai H. Quantum chemical reaction prediction method based on machine learning. Bull Chem Soc Jpn. 2020;93(5):685–693.
  • Iwasaki T, Maruyama M, Niwa T, et al. Design of peptides with strong binding affinity to poly(methyl methacrylate) resin by use of molecular simulation-based materials informatics. Polym J. 2021;53(12):1439–1449. DOI:10.1038/s41428-021-00543-6
  • Chaikittisilp W, Yamauchi Y, Ariga K. Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: what will be the next paradigm shift in nanoporous materials? Adv Mater. 2022;34(7):2107212.
  • Falk A, Buckley B, Calusine G, et al. Polytype control of spin qubits in silicon carbide. Nat Commun. 2013;4(1):1819. DOI:10.1038/ncomms2854
  • Setyawati MI, Tay CY, Leong DT. Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. Biomaterials. 2013;34:10133–10142.
  • Tay CY, Cai P, Setyawati MI, et al. Nanoparticles strengthen intracellular tension and retard cellular migration. Nano Lett. 2014;14(1):83–88. DOI:10.1021/nl4032549
  • Tay CY, Fang W, Setyawati MI, et al. Nano-Hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS Appl Mater Interfaces. 2014;6(9):6248–6256. DOI:10.1021/am501266a
  • Setyawati MI, Yuan X, Xie J, et al. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials. 2014;35(25):6707–6715. DOI:10.1016/j.biomaterials.2014.05.007
  • Chia SL, Tay CY, Setyawati MI, et al. Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles. Small. 2015;11:702–712.
  • Setyawati MI, Tay CY, Leong DT. Mechanistic investigation of the biological effects of SiO2, TiO2, and ZnO nanoparticles on intestinal cells. Small. 2015;11(28):3458–3468.
  • Setyawati MI, Sevencan C, Bay BH, et al. Nano-TiO2 drives epithelial-mesenchymal transition in intestinal epithelial cancer cells. Small. 2018;14(30):1800922. DOI:10.1002/smll.201800922
  • Lee M, Ni N, Tang H, et al. A framework of paracellular transport via nanoparticles‐induced endothelial leakiness. Adv Sci. 2021;8(21):2102519. DOI:10.1002/advs.202102519