11,593
Views
35
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Science of 2.5 dimensional materials: paradigm shift of materials science toward future social innovation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 275-299 | Received 21 Feb 2022, Accepted 30 Mar 2022, Published online: 06 May 2022

References

  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–191.
  • Zurutuza A, Marinelli C. Challenges and opportunities in graphene commercialization. Nat Nanotechnol. 2014;9:730–734.
  • Choi W, Choudhary N, Han GH, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today. 2017;20:116–130.
  • Mannix AJ, Kiraly B, Hersam MC, et al. Synthesis and chemistry of elemental 2D materials. Nat Rev Chem. 2017;1:0014.
  • Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol. 2018;13:246–252.
  • Pizzocchero F, Gammelgaard L, Jessen BS, et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat Commun. 2016;7:11894.
  • Masubuchi S, Morimoto M, Morikawa S, et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat Commun. 2018;9:1413.
  • Oostinga JB, Heersche HB, Liu X, et al. Gate-Induced insulating state in bilayer graphene devices. Nat Mater. 2008;7:151–157.
  • Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature. 2018;556:43–50.
  • Lin Y-C, Motoyama A, Kretschmer S, et al. Polymorphic phases of metal chlorides in the confined 2D space of bilayer graphene. Adv Mater. 2021;33:2105898.
  • Jin C, Regan EC, Yan A, et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature. 2019;567:76–80.
  • Shinokita K, Miyauchi Y, Watanabe K, et al. Resonant coupling of a Moiré exciton to a phonon in a WSe2/MoSe2 heterobilayer. Nano Lett. 2021;21:5938–5944.
  • Nakamura K, Nagamura N, Ueno K, et al. All 2D heterostructure tunnel field-effect transistors: impact of band alignment and heterointerface quality. ACS Appl Mater Interfaces. 2020;12:51598–51606.
  • Aji AS, Izumoto M, Suenaga K, et al. Two-step synthesis and characterization of vertically stacked SnS–WS2 and SnS–MoS2 p–n heterojunctions. Phys Chem Chem Phys. 2018;20:889–897.
  • Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706–710.
  • Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–1314.
  • Li X, Magnuson CW, Venugopal A, et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc. 2011;133:2816–2819.
  • Wang M, Huang M, Luo D, et al. Single-crystal, large-area, fold-free monolayer graphene. Nature. 2021;596:519–524.
  • Takesaki Y, Kawahara K, Hibino H, et al. Highly uniform bilayer graphene on epitaxial Cu-Ni(111) alloy. Chem Mater. 2016;28:4583–4592.
  • Solís-Fernández P, Terao Y, Kawahara K, et al. Isothermal growth and stacking evolution in highly uniform Bernal-stacked bilayer graphene. ACS Nano. 2020;14:6834–6844.
  • Huang M, Bakharev PV, Wang Z-J, et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat Nanotechnol. 2020;15:289–295.
  • Song L, Ci L, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010;10:3209–3215.
  • Kim KK, Hsu A, Jia X, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012;12:161–166.
  • Uchida Y, Nakandakari S, Kawahara K, et al. Controlled growth of large-area uniform multilayer hexagonal boron nitride as an effective 2D substrate. ACS Nano. 2018;12:6236–6244.
  • Wang L, Xu X, Zhang L, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature. 2019;570:91.
  • Li X, Zhu Y, Cai W, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009;9:4359–4363.
  • Lee Y-H, Zhang X-Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater. 2012;24:2320–2325.
  • Dumcenco D, Ovchinnikov D, Marinov K, et al. Large-area epitaxial monolayer MoS2. ACS Nano. 2015;9:4611–4620.
  • Kobayashi Y, Sasaki S, Mori S, et al. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano. 2015;9:4056–4063.
  • Shi Y, Zhou W, A-Y L, et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012;12:2784–2791.
  • Okada M, Sawazaki T, Watanabe K, et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano. 2014;8:8273–8277.
  • Kang K, Xie S, Huang L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature. 2015;520:656–660.
  • Li T, Guo W, Ma L, et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat Nanotechnol. 2021;16:1201–1207.
  • Xu X, Pan Y, Liu S, et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science. 2021;372:195–200.
  • Lim HE, Irisawa T, Okada N, et al. Monolayer MoS2 growth at the Au–SiO2 interface. Nanoscale. 2019;11:19700–19704.
  • Levendorf MP, Kim C-J, Brown L, et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature. 2012;488:627–632.
  • Miyata Y, Maeda E, Kamon K, et al. Fabrication and characterization of graphene/hexagonal boron nitride hybrid sheets. Appl Phys Express. 2012;5:085102.
  • Sutter P, Cortes R, Lahiri J, et al. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett. 2012;12:4869–4874.
  • Maeda E, Miyata Y, Hibino H, et al. Orientation-controlled growth of hexagonal boron nitride monolayers templated from graphene edges. Appl Phys Express. 2017;10:055102.
  • Duan X, Wang C, Shaw JC, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol. 2014;9:1024–1030.
  • Huang C, Wu S, Sanchez AM, et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat Mater. 2014;13:1096–1101.
  • Gong Y, Lin J, Wang X, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater. 2014;13:1135–1142.
  • Kobayashi Y, Yoshida S, Maruyama M, et al. Continuous heteroepitaxy of two-dimensional heterostructures based on layered chalcogenides. ACS Nano. 2019;13:7527–7535.
  • Gong C, Zhang H, Wang W, et al. Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl Phys Lett. 2013;103:053513.
  • Xie S, Tu L, Han Y, et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science. 2018;359:1131–1136.
  • Koma A, Sunouchi K, Miyajima T. Fabrication and characterization of heterostructures with subnanometer thickness. Microelectron Eng. 1984;2:129–136.
  • Yang W, Chen G, Shi Z, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater. 2013;12:792–797.
  • Havener RW, Zhuang H, Brown L, et al. Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 2012;12:3162–3167.
  • Liu K, Zhang L, Cao T, et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat Commun. 2014;5:4966.
  • Taniguchi T, Watanabe K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J Cryst Growth. 2007;303:525–529.
  • Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol. 2010;5:722–726.
  • Wang L, Meric I, Huang PY, et al. One-dimensional electrical contact to a two-dimensional material. Science. 2013;342:614–617.
  • Cao Y, Luo JY, Fatemi V, et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys Rev Lett. 2016;117:116804.
  • Kang K, Lee K-H, Han Y, et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature. 2017;550:229–233.
  • Mannix AJ, Ye A, Sung SH, et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat Nanotechnol. 2022. DOI: 10.1038/s41565-021-01061-5
  • Dresselhaus MS, Dresselhaus G. Intercalation compounds of graphite. Adv Phys. 2002;51:1–186.
  • Saito S, Oshiyama A. Cohesive mechanism and energy bands of solid C60. Phys Rev Lett. 1991;66:2637–2640.
  • Delaney P, Choi HJ, Ihm J, et al. Broken symmetry and pseudogaps in ropes of carbon nanotubes. Nature. 1998;391:466–468.
  • Miyamoto Y, Saito S, Tománek D. Electronic interwall interactions and charge redistribution in multiwall nanotubes. Phys Rev B. 2001;65:041402.
  • Smith BW, Monthioux M, Luzzi DE. Encapsulated C60 in carbon nanotubes. Nature. 1998;396:323–324.
  • Posternak M, Baldereschi A, Freeman AJ, et al. Prediction of electronic surface states in layered materials: graphite. Phys Rev Lett. 1984;52:863–866.
  • Denis PA. Pristine graphene-based catalysis: significant reduction of the inversion barriers of adsorbed and confined corannulene, sumanene, and dibenzo[a,g]corannulene. J Phys Chem a. 2015;119:5770–5777.
  • Saito S, Oshiyama A. Design of C60-graphite cointercalation compounds. Phys Rev B. 1994;49:17413–17419.
  • Sakurai H, Daiko T, Sakane H, et al. Structural elucidation of sumanene and generation of its benzylic anions. J Am Chem Soc. 2005;127:11580–11581.
  • Higashibayashi S, Tsuruoka R, Soujanya Y, et al. Trimethylsumanene: enantioselective synthesis, substituent effect on bowl structure, inversion energy, and electron conductivity. Bull Chem Soc Jpn. 2012;85:450–467.
  • Maruyama M, Okada S. Carrier redistribution in van der Waals nanostructures consisting of bilayer graphene and buckybowl: implications for piezoelectric devices. ACS Appl Nano Mater. 2021;4:3007–3012.
  • Maruyama M, Cuong NT, Okada S. Coexistence of dirac cones and kagome flat bands in a porous graphene. Carbon. 2016;109:755–763.
  • Fujii Y, Maruyama M, Okada S. Geometric and electronic structures of two-dimensionally polymerized triptycene: covalent honeycomb networks comprising triptycene and polyphenyl. Jpn J Appl Phys. 2018;57:125203.
  • Fujita M, Wakabayashi K, Nakada K, et al. Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn. 1996;65:1920–1923.
  • Nakada K, Fujita M, Dresselhaus G, et al. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B. 1996;54:17954–17961.
  • Shima N, Aoki H. Electronic structure of super-honeycomb systems: a peculiar realization of semimetal/semiconductor classes and ferromagnetism. Phys Rev Lett. 1993;71:4389–4392.
  • Okada S, Igami M, Nakada K, et al. Border states in heterosheets with hexagonal symmetry. Phys Rev B. 2000;62:9896–9899.
  • Maruyama M, Okada S. Magnetic properties of graphene quantum dots embedded in h-BN sheet. J Phys Chem C. 2016;120:1293–1302.
  • Zhan D, Sun L, Ni ZH, et al. FeCl3-based few-layer graphene intercalation compounds: single linear dispersion electronic band structure and strong charge transfer doping. Adv Funct Mater. 2010;20:3504–3509.
  • Kim N, Kim KS, Jung N, et al. Synthesis and electrical characterization of magnetic bilayer graphene intercalate. Nano Lett. 2011;11:860–865.
  • Zhao W, Tan PH, Liu J, et al. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of fermi level, layer by layer decoupling, and stability. J Am Chem Soc. 2011;133:5941–5946.
  • Khrapach I, Withers F, Bointon TH, et al. Novel highly conductive and transparent graphene-based conductors. Adv Mater. 2012;24:2844–2849.
  • Kinoshita H, Jeon I, Maruyama M, et al. Highly conductive and transparent large-area bilayer graphene realized by MoCl5 intercalation. Adv Mater. 2017;29:1702141.
  • Katagiri M, Miyazaki H, Matsumoto R, et al. Intercalation doping of narrow multilayer graphene interconnects with sub-100 nm widths. Jpn J Appl Phys. 2017;56:07KD01.
  • Ichinokura S, Sugawara K, Takayama A, et al. Superconducting calcium-intercalated bilayer graphene. ACS Nano. 2016;10:2761–2765.
  • Wang H, Huang X, Lin J, et al. High-Quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat Commun. 2017;8:394.
  • Kühne M, Börrnert F, Fecher S, et al. Reversible superdense ordering of lithium between two graphene sheets. Nature. 2018;564:234.
  • Kühne M, Paolucci F, Popovic J, et al. Ultrafast lithium diffusion in bilayer graphene. Nat Nanotechnol. 2017;12:895–900.
  • Sun J, Sadd M, Edenborg P, et al. Real-time imaging of Na+ reversible intercalation in “Janus” graphene stacks for battery applications. Sci Adv. 2021;7:eabf0812.
  • Lin Y-C, Motoyama A, Solís-Fernández P, et al. Coupling and decoupling of bilayer graphene monitored by electron energy loss spectroscopy. Nano Lett. 2021;21:10386–10391.
  • Vasu KS, Prestat E, Abraham J, et al. van der Waals pressure and its effect on trapped interlayer molecules. Nat Commun. 2016;7:12168.
  • Ghodsi SM, Megaridis CM, Shahbazian‐Yassar R, et al. Advances in graphene-based liquid cell electron microscopy: working principles, opportunities, and challenges. Small Methods. 2019;3:1900026.
  • Li Z, Zhang X, Zhao X, et al. Imprinting ferromagnetism and superconductivity in single atomic layers of molecular superlattices. Adv Mater. 2020;32:1907645.
  • He Q, Lin Z, Ding M, et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 2019;19:6819–6826.
  • Hayashi S, Visikovskiy A, Kajiwara T, et al. Triangular lattice atomic layer of Sn(1 × 1) at graphene/SiC(0001) interface. Appl Phys Express. 2017;11:015202.
  • Briggs N, Bersch B, Wang Y, et al. Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy. Nat Mater. 2020;19:637–643.
  • Lopes dos Santos JMB, Peres NMR, Castro Neto AH. Graphene bilayer with a twist: electronic structure. Phys Rev Lett. 2007;99:256802.
  • Bistritzer R, MacDonald AH. Moiré bands in twisted double-layer graphene. Proc Natl Acad Sci, USA. 2011;108:12233–12237.
  • Kindermann M, First PN. Local sublattice-symmetry breaking in rotationally faulted multilayer graphene. Phys Rev B. 2011;83:045425.
  • Moon P, Koshino M. Energy spectrum and quantum Hall effect in twisted bilayer graphene. Phys Rev B. 2012;85:195458.
  • Moon P, Koshino M. Optical absorption in twisted bilayer graphene. Phys Rev B. 2013;87:205404.
  • Nam NNT, Koshino M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys Rev B. 2017;96:075311.
  • Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature. 2018;556:80–84.
  • Yankowitz M, Chen S, Polshyn H, et al. Tuning superconductivity in twisted bilayer graphene. Science. 2019;363:1059–1064.
  • Lu X, Stepanov P, Yang W, et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature. 2019;574:653–657.
  • Sharpe AL, Fox EJ, Barnard AW, et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science. 2019;365:605–608.
  • Serlin M, Tschirhart CL, Polshyn H, et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science. 2020;367:900–903.
  • Shen C, Chu Y, Wu Q, et al. Correlated states in twisted double bilayer graphene. Nat Phys. 2020;16:520–525.
  • Liu X, Hao Z, Khalaf E, et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature. 2020;583:221–225.
  • Cao Y, Rodan-Legrain D, Rubies-Bigorda O, et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature. 2020;583:215–220.
  • Chebrolu NR, Chittari BL, Jung J. Flat bands in twisted double bilayer graphene. Phys Rev B. 2019;99:235417.
  • Koshino M. Band structure and topological properties of twisted double bilayer graphene. Phys Rev B. 2019;99:235406.
  • Lee JY, Khalaf E, Liu S, et al. Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene. Nat Commun. 2019;10:5333.
  • Zhu Z, Carr S, Massatt D, et al. Twisted trilayer graphene: a precisely tunable platform for correlated electrons. Phys Rev Lett. 2020;125:116404.
  • Lin F, Qiao J, Huang J, et al. Heteromoiré engineering on magnetic Bloch transport in twisted graphene superlattices. Nano Lett. 2020;20:7572–7579.
  • Park JM, Cao Y, Watanabe K, et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature. 2021;590:249–255.
  • Hao Z, Zimmerman AM, Ledwith P, et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science. 2021;371:1133–1138.
  • Seyler KL, Rivera P, Yu H, et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature. 2019;567:66–70.
  • Tran K, Moody G, Wu F, et al. Evidence for moiré excitons in van der Waals heterostructures. Nature. 2019;567:71–75.
  • Dean CR, Wang L, Maher P, et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature. 2013;497:598–602.
  • Ponomarenko LA, Gorbachev RV, Yu GL, et al. Cloning of Dirac fermions in graphene superlattices. Nature. 2013;497:594–597.
  • Hunt B, Sanchez-Yamagishi JD, Young AF, et al. Massive dirac fermions and Hofstadter butterfly in a van der Waals Heterostructure. Science. 2013;340:1427–1430.
  • Sachs B, Wehling TO, Katsnelson MI, et al. Adhesion and electronic structure of graphene on hexagonal boron nitride substrates. Phys Rev B. 2011;84:195414.
  • Kindermann M, Uchoa B, Miller DL. Zero-Energy modes and gate-tunable gap in graphene on hexagonal boron nitride. Phys Rev B. 2012;86:115415.
  • Wallbank JR, Patel AA, Mucha-Kruczyński M, et al. Generic miniband structure of graphene on a hexagonal substrate. Phys Rev B. 2013;87:245408.
  • Mucha-Kruczyński M, Wallbank JR, Fal’-Ko VI. Heterostructures of bilayer graphene and h-BN: Interplay between misalignment, interlayer asymmetry, and trigonal warping. Phys Rev B. 2013;88:205418.
  • Moon P, Koshino M. Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice. Phys Rev B. 2014;90:155406.
  • Gorbachev RV, Song JCW, Yu GL, et al. Detecting topological currents in graphene superlattices. Science. 2014;346:448–451.
  • Chen G, Sharpe AL, Gallagher P, et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature. 2019;572:215–219.
  • Koshino M. Interlayer interaction in general incommensurate atomic layers. New J Phys. 2015;17:015014.
  • Ahn SJ, Moon P, Kim T-H, et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science. 2018;361:782–786.
  • Moon P, Koshino M, Son Y-W. Quasicrystalline electronic states in 30° rotated twisted bilayer graphene. Phys Rev B. 2019;99:165430.
  • Finney NR, Yankowitz M, Muraleetharan L, et al. Tunable crystal symmetry in graphene–boron nitride heterostructures with coexisting moiré superlattices. Nat Nanotechnol. 2019;14:1029–1034.
  • Wang L, Zihlmann S, Liu M-H, et al. New generation of Moiré superlattices in doubly aligned hBN/graphene/hBN heterostructures. Nano Lett. 2019;19:2371–2376.
  • Wang Z, Wang YB, Yin J, et al. Composite super-moiré lattices in double-aligned graphene heterostructures. Sci Adv. 2019;5:eaay8897.
  • Yang Y, Li J, Yin J, et al. In situ manipulation of van der Waals heterostructures for twistronics. Sci Adv. 2020;6:eabd3655.
  • Onodera M, Kinoshita K, Moriya R, et al. Cyclotron resonance study of monolayer graphene under double Moiré potentials. Nano Lett. 2020;20:4566–4572.
  • Anđelković M, Milovanović SP, Covaci L, et al. Double Moiré with a twist: supermoiré in encapsulated graphene. Nano Lett. 2020;20:979–988.
  • Leconte N, Jung J. Commensurate and incommensurate double moire interference in graphene encapsulated by hexagonal boron nitride. 2D Mater. 2020;7:031005.
  • Oka H, Koshino M. Fractal energy gaps and topological invariants in hBN/graphene/hBN double moiré systems. Phys Rev B. 2021;104:035306.
  • Koshino M, Oka H. Phys Rev Res. 2022;4:013028.
  • Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett. 2010;105:136805.
  • Cheng R, Li D, Zhou H, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 2014;14:5590–5597.
  • Rivera P, Schaibley JR, Jones AM, et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat Commun. 2015;6:6242.
  • Mak KF, He K, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol. 2012;7:494–498.
  • Xiao D, Liu G-B, Feng W, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett. 2012;108:196802.
  • Zhong D, Seyler KL, Linpeng X, et al. van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci Adv. 2017;3:1603113.
  • Srivastava A, Sidler M, Allain AV, et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat Phys. 2015;11:141–147.
  • Zhao C, Norden T, Zhang P, et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat Nanotechnol. 2017;12:757–762.
  • Zhang Y, Shinokita K, Watanabe K, et al. Controllable magnetic proximity effect and charge transfer in 2D semiconductor and double-layered perovskite manganese oxide van der Waals heterostructure. Adv Mater. 2020;32:2003501.
  • Ryu C, Samson EC, Boshier MG. Quantum interference of currents in an atomtronic SQUID. Nat Commun. 2020;11:3338.
  • Alexeev EM, Ruiz-Tijerina DA, Danovich M, et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature. 2019;567:81.
  • Hisamoto D, Lee W-C, Kedzierski J, et al. FinFET-A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Devices. 2000;47:2320–2325.
  • Ieong M, Doris B, Kedzierski J, et al. Silicon device scaling to the sub-10-nm regime. Science. 2004;306:2057–2060.
  • Chen M-L, Sun X, Liu H, et al. A FinFET with one atomic layer channel. Nat Commun. 2020;11:1205.
  • Huang X, Liu C, Zeng S, et al. Ultrathin multibridge channel transistor enabled by van der Waals assembly. Adv Mater. 2021;33:2102201.
  • Radisavljevic B, Radenovic A, Brivio J, et al. Single-Layer MoS2 transistors. Nat Nanotechnol. 2011;6:147–150.
  • Desai SB, Madhvapathy SR, Sachid AB, et al. MoS2 transistors with 1-nanometer gate lengths. Science. 2016;354:99–102.
  • Uwanno T, Taniguchi T, Watanabe K, et al. Electrically inert h-BN/bilayer graphene interface in all-two-dimensional heterostructure field effect transistors. ACS Appl Mater Interfaces. 2018;10:28780–28788.
  • Fang N, Toyoda S, Taniguchi T, et al. Full energy spectra of interface state densities for n- and p-type MoS2 field-effect transistors. Adv Funct Mater. 2019;29:1904465.
  • Vu QA, Shin YS, Kim YR, et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat Commun. 2016;7:12725.
  • Qiu D, Lee DU, Lee KS, et al. Toward negligible charge loss in charge injection memories based on vertically integrated 2D heterostructures. Nano Res. 2016;9:2319–2326.
  • Sasaki T, Ueno K, Taniguchi T, et al. Material and device structure designs for 2D memory devices based on the floating gate voltage trajectory. ACS Nano. 2021;15:6658–6668.
  • Liu L, Liu C, Jiang L, et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat Nanotechnol. 2021;16:874–881.
  • Wu L, Wang A, Shi J, et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat Nanotechnol. 2021;16:882–887.
  • Bertolazzi S, Bondavalli P, Roche S, et al. Nonvolatile memories based on graphene and related 2D materials. Adv Mater. 2019;31:1806663.
  • Kobayashi M. A perspective on steep-subthreshold-slope negative-capacitance field-effect transistor. Appl Phys Express. 2018;11:110101.
  • Tomioka K, Yoshimura M, Fukui T. Steep-Slope tunnel field-effect transistors using III-V nanowire/Si heterojunction. 2012 Symposium on VLSI Technology (VLSIT). Honolulu, HI, USA: IEEE; 2012 . p. 47–48.
  • Kim S, Myeong G, Shin W, et al. Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat Nanotechnol. 2020;15:203–206.
  • Feng Z, Chen B, Qian S, et al. Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure. 2D Mater. 2016;3:035021.
  • Perkins FK, Friedman AL, Cobas E, et al. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013;13:668–673.
  • Ono T, Kanai Y, Inoue K, et al. Electrical biosensing at physiological ionic strength using graphene field-effect transistor in femtoliter microdroplet. Nano Lett. 2019;19:4004–4009.
  • Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun. 2014;5:5678.
  • Zhang X, Grajal J, Vazquez-Roy JL, et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature. 2019;566:368.
  • Sun D-M, Timmermans MY, Kaskela A, et al. Mouldable all-carbon integrated circuits. Nat Commun. 2013;4:2302.
  • Lv R, Cruz-Silva E, Terrones M. Building complex hybrid carbon architectures by covalent interconnections: graphene–nanotube hybrids and more. ACS Nano. 2014;8:4061–4069.
  • Knobloch T, Illarionov YY, Ducry F, et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat Electron. 2021;4:98–108.
  • Bernardi M, Palummo M, Grossman JC. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013;13:3664–3670.
  • Prabhu P, Jose V, Lee J-M. Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter. 2020;2:526–553.
  • Jia P, Wang L, Zhang Y, et al. Harnessing ionic power from equilibrium electrolyte solution via photoinduced active ion transport through van-der-Waals-like heterostructures. Adv Mater. 2021;33:2007529.
  • Furchi MM, Pospischil A, Libisch F, et al. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014;14:4785–4791.
  • Tan S, Zhao Y, Dong J, et al. Determination of optimum optoelectronic properties in vertically stacked MoS2/h-BN/WSe2 van der Waals heterostructures. Phys Chem Chem Phys. 2019;21:23179–23186.
  • Pezeshki A, Shokouh SHH, Nazari T, et al. Electric and photovoltaic behavior of a few-layer α-MoTe2/MoS2 dichalcogenide heterojunction. Adv Mater. 2016;28:3216–3222.
  • Park C, Duong NT, Bang S, et al. Photovoltaic effect in a few-layer ReS2/WSe2 heterostructure. Nanoscale. 2018;10:20306–20312.
  • Cheng Q, Okamoto Y, Tamura N, et al. Graphene-like-graphite as fast-chargeable and high-capacity anode materials for lithium ion batteries. Sci Rep. 2017;7:14782.
  • Truong QD, Kempaiah Devaraju M, Nakayasu Y, et al. Exfoliated MoS2 and MoSe2 Nanosheets by a supercritical fluid process for a hybrid Mg–Li-ion battery. ACS Omega. 2017;2:2360–2367.
  • Choi S, Kim C, Lee JY, et al. Vertically aligned MoS2 thin film catalysts with Fe-Ni sulfide nanoparticles by one-step sulfurization for efficient solar water reduction. Chem Eng J. 2021;418:129369.
  • Lan H-Y, Hsieh Y-H, Chiao Z-Y, et al. Gate-tunable plasmon-enhanced photodetection in a monolayer MoS2 phototransistor with ultrahigh photoresponsivity. Nano Lett. 2021;21:3083–3091.
  • Zhao W, Wang S, Liu B, et al. Exciton–plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles. Adv Mater. 2016;28:2709–2715.
  • Chen Y, Li H, Blei M, et al. Monolayer excitonic semiconductors integrated with Au quasi-periodic nanoterrace morphology on fused silica substrates for light-emitting devices. ACS Appl Nano Mater. 2021;4:84–93.
  • Pu J, Takenobu T. Monolayer transition metal dichalcogenides as light sources. Adv Mater. 2018;30:1707627.
  • Withers F, Del Pozo-Zamudio O, Schwarz S, et al. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. 2015;15:8223–8228.
  • Fang H, Battaglia C, Carraro C, et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc Natl Acad Sci, USA. 2014;111:6198–6202.
  • Erkılıç U, Solís-Fernández P, Ji HG, et al. Vapor phase selective growth of two-dimensional perovskite/WS2 heterostructures for optoelectronic applications. ACS Appl Mater Interfaces. 2019;11:40503–40511.
  • Yang T, Wang X, Zheng B, et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano. 2019;13:7996–8003.
  • Wang Q, Zhang Q, Luo X, et al. Optoelectronic properties of a van der Waals WS2 Monolayer/2D perovskite vertical heterostructure. ACS Appl Mater Interfaces. 2020;12:45235–45242.
  • Yang A, Blancon J-C, Jiang W, et al. Giant enhancement of photoluminescence emission in WS2-two-dimensional perovskite heterostructures. Nano Lett. 2019;19:4852–4860.