4,161
Views
23
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 300-321 | Received 02 Dec 2021, Accepted 03 Apr 2022, Published online: 06 May 2022

References

  • Chen C, Liu M, Zhang L, et al. Mimicking from rose petal to lotus leaf: biomimetic multiscale hierarchical particles with tunable water adhesion. ACS Appl Mater Interfaces. 2019;11(7):7431–7440. DOI:10.1021/acsami.8b21494
  • Wu D, Wang JN, Wu SZ, et al. Three-Level biomimetic rice-leaf surfaces with controllable anisotropic sliding. Adv Funct Mater. 2011;21(15):2927–2932. DOI:10.1002/adfm.201002733
  • Bixler GD, Bhushan B. Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter. 2012;8(44):11271–11284.
  • Kumari N, Sood N, Krishnan V. Beetle wing inspired fabrication of nanojunction based biomimetic SERS substrates for sensitive detection of analytes. Mater Technol. 2020;1–12.
  • Kumari N, Kumar A, Krishnan V. Ultrathin Au–Ag heterojunctions on nanoarchitectonics based biomimetic substrates for dip catalysis. J Inorg Organomet Polym Mater. 1902;31(5):1954–1966.
  • Ariga K, Yamauchi Y. Nanoarchitectonics from atom to life. Chem – Asian J. 2020;15(6):718–728.
  • Chen TL, Huang CY, Xie YT, et al. Bioinspired durable superhydrophobic surface from a hierarchically wrinkled nanoporous polymer. ACS Appl Mater Interfaces. 2019;11(43):40875–40885. DOI:10.1021/acsami.9b14325
  • Bixler GD, Bhushan B. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale. 2013;5(17):7685–7710.
  • West N, Sammut K, Tang Y. Material selection and manufacturing of riblets for drag reduction: an updated review. Proce Inst Mech Eng Part L J Mat Des Appl. 2018;232:610–622.
  • Bixler GD, Bhushan B. Bioinspired micro/nanostructured surfaces for oil drag reduction in closed channel flow. Soft Matter. 2013;9(5):1620–1635.
  • Shen Y, Wu Z, Tao J, et al. Spraying preparation of eco-friendly superhydrophobic coatings with ultralow water adhesion for effective anticorrosion and antipollution. ACS Appl Mater Interfaces. 2020;12(22):25484–25493. DOI:10.1021/acsami.0c06074
  • Wang H, He M, Liu H, et al. One-Step fabrication of robust superhydrophobic steel surfaces with mechanical durability, thermal stability, and anti-icing function. ACS Appl Mater Interfaces. 2019;11(28):25586–25594. DOI:10.1021/acsami.9b06865
  • Souza JGS, Bertolini M, Costa RC, et al. Targeting pathogenic biofilms: newly developed superhydrophobic coating favors a host-compatible microbial profile on the titanium surface. ACS Appl Mater Interfaces. 2020;12(9):10118–10129. DOI:10.1021/acsami.9b22741
  • Han K, Park TY, Yong K, et al. Combinational biomimicking of lotus leaf, mussel, and sandcastle worm for robust superhydrophobic surfaces with biomedical multifunctionality: antithrombotic, antibiofouling, and tissue closure capabilities. ACS Appl Mater Interfaces. 2019;11(10):9777–9785. DOI:10.1021/acsami.8b21122
  • Jeevahan J, Chandrasekaran M, Britto Joseph G, et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J Coatings Technol Res. 2018;15(2):231–250. DOI:10.1007/s11998-017-0011-x
  • Tenjimbayashi M, Samitsu S, Watanabe Y, et al. Liquid marble patchwork on super-repellent surface. Adv Funct Mater. 2021;31:1–8.
  • Jung YC, Bhushan B. Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J Phys Condens Matter. 2010;22(3):035104.
  • Lee SG, Lim HS, Lee DY, et al. Tunable anisotropic wettability of rice leaf-like wavy surfaces. Adv Funct Mater. 2013;23(5):547–553. DOI:10.1002/adfm.201201541
  • Sharma V, Krishnan V. Fabrication of highly sensitive biomimetic SERS substrates for detection of herbicides in trace concentration. Sens Actuators B Chem. 2018;262:710–719.
  • Fresnais J, Chapel JP, Poncin-Epaillard F. Synthesis of transparent superhydrophobic polyethylene surfaces. Surf Coat Technol. 2006;200(18–19):5296–5305.
  • Wang S, Liu K, Yao X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev. 2015;115(16):8230–8293. DOI:10.1021/cr400083y
  • Dong Z, Vuckovac M, Cui W, et al. 3D printing of superhydrophobic objects with bulk nanostructure. Adv Mater. 2021;33(45):2106068. DOI:10.1002/adma.202106068
  • Lee KM, Park H, Kim J, et al. Fabrication of a superhydrophobic surface using a fused deposition modeling (FDM) 3D printer with poly lactic acid (PLA) filament and dip coating with silica nanoparticles. Appl Surf Sci. 2019;467-468:979–991.
  • Milionis A, Noyes C, Loth E, et al. Superhydrophobic 3D printed surfaces by dip-coating. Tech Proc 2014 NSTI Nanotechnol Conf Expo, NSTI-Nanotech 2014. 2014;2:157–160.
  • Milionis A, Noyes C, Loth E, et al. Water-repellent approaches for 3-D printed internal passages. Mater Manuf Process. 2016;31(9):1162–1170. DOI:10.1080/10426914.2015.1059443
  • Zhang L, Wu J, Hedhili MN, et al. Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces. J Mater Chem a. 2015;3(6):2844–2852. DOI:10.1039/C4TA05862C
  • He Z, Chen Y, Yang J, et al. Fabrication of Polydimethylsiloxane films with special surface wettability by 3D printing. Compos Part B Eng. 2017;129:58–65.
  • Yang Y, Li X, Zheng X, et al. 3D-Printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv Mater. 2018;30:1–11.
  • Jafari R, Cloutier C, Allahdini A, et al. Recent progress and challenges with 3D printing of patterned hydrophobic and superhydrophobic surfaces. Int J Adv Manuf Technol. 2019;103(1–4):1225–1238. DOI:10.1007/s00170-019-03630-4
  • Zhang H, Li Y, Lu Z, et al. Differential expression of microRnas during fiber development between fuzzless-lintless mutant and its wild-type allotetraploid cotton. Sci Rep. 2017;7(1):3–10. DOI:10.1038/s41598-017-00038-6
  • Qin L, Chu Y, Zhou X, et al. Fast healable superhydrophobic material. ACS Appl Mater Interfaces. 2019;11(32):29388–29395. DOI:10.1021/acsami.9b07563
  • Zhang X, Guo Y, Zhang Z, et al. Self-Cleaning superhydrophobic surface based on titanium dioxide nanowires combined with polydimethylsiloxane. Appl Surf Sci. 2013;284:319–323.
  • Lu Y, Sathasivam S, Song J, et al. Robust self-cleaning surfaces that function when exposed to either air or oil. Science. 2015;347(6226):1132–1134. DOI:10.1126/science.aaa0946
  • Heo KJ, Bin JS, Shin J, et al. Water-repellent TiO 2 -Organic dye-based air filters for efficient visible-light-activated photochemical inactivation against bioaerosols. Nano Lett. 2021;21(4):1576–1583. DOI:10.1021/acs.nanolett.0c03173
  • Liu J, Ye L, Sun Y, et al. Elastic superhydrophobic and photocatalytic active films used as blood repellent dressing. Adv Mater. 2020;32(11):1908008. DOI:10.1002/adma.201908008
  • Ding Y, Leng Y, Huang N, et al. Effects of microtopographic patterns on platelet adhesion and activation on titanium oxide surfaces. J Biomed Mater Res - Part a. 2013;101(3):A:622–632. DOI:10.1002/jbm.a.34361
  • Nakajima A, Hashimoto K, Watanabe T, et al. Transparent superhydrophobic thin films with self-cleaning properties. Langmuir. 2000;16(17):7044–7047. DOI:10.1021/la000155k
  • Yan C, Jiang P, Jia X, et al. 3D printing of bioinspired textured surfaces with superamphiphobicity. Nanoscale. 2020;12(5):2924–2938. DOI:10.1039/C9NR09620E
  • Quan H, Zhang T, Xu H, et al. Photo-Curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110–115. DOI:10.1016/j.bioactmat.2019.12.003
  • Li Y, Mao H, Hu P, et al. Bioinspired functional surfaces enabled by multiscale stereolithography. Adv Mater Technol. 2019;4:1–7.
  • Peng L, Chen K, Chen D, et al. Study on the enhancing water collection efficiency of cactus-and beetle-like biomimetic structure using UV-induced controllable diffusion method and 3D printing technology. RSC Adv. 2021;11(24):14769–14776. DOI:10.1039/D1RA00652E
  • Bidkar RA, Leblanc L, Kulkarni AJ, et al. Skin-Friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Phys Fluids. 2014;26(8):085108. DOI:10.1063/1.4892902
  • Walsh MJ. Riblets as a viscous drag reduction technique. Aiaa J. 1983;21(4):485–486.
  • García-Mayoral R, Jiménez J. Drag reduction by riblets. Philos Trans R Soc a Math Phys Eng Sci. 2011;369(1940):1412–1427.
  • Saravi SS, Cheng K. A review of drag reduction by riblets and micro-textures in the turbulent boundary layers. Eur Sci J. 2013;9:62–81.
  • Moore AR, Lowson MV. Drag reduction in a rectangular duct using riblets. Aeronaut J. 1995;99:187–193.
  • Abdulbari HA, Yunus RM, Abdurahman NH, et al. Going against the flow—a review of non-additive means of drag reduction. J Ind Eng Chem. 2013;19(1):27–36. DOI:10.1016/j.jiec.2012.07.023
  • Daniello RJ, Waterhouse NE, Rothstein JP. Drag reduction in turbulent flows over superhydrophobic surfaces. Phys Fluids. 2009;21(8):1–9.
  • FreeFEM - An open-source PDE solver using the finite element method.
  • Bathe K-J. Finite element method. Wiley Encycl Comput Sci Eng. 2008;1–12.
  • Reddy PD JN. Introduction to the finite element method. 4th ed. New York Chicago San FranciscoAthens London MadridMexico City Milan New DelhiSingapore Sydney Toronto: McGraw-Hill Education; 2019.
  • Formlabs. Safety data sheet Clear Resin. 2019. p. 2.
  • Förch R, Schönherr H, At J. Appendix C: Contact Angle Goniometry. In: Fçrch R Schçnherr H and ATAJ, editors. Surf Des Appl Biosci Nanotechnol. Weinheim: WILEY-VCH Verlag GmbH & Co.; 2009. p. 471–473.
  • Song D, Daniello RJ, Rothstein JP. Drag reduction using superhydrophobic sanded Teflon surfaces. Exp Fluids. 2014;55(8):1783.
  • Jung T, Choi H, Kim J. Effects of the air layer of an idealized superhydrophobic surface on the slip length and skin-friction drag. J Fluid Mech. 2016;790:R11–R112.
  • Golovin KB, Gose J, Perlin M, et al. Bioinspired surfaces for turbulent drag reduction. Philos Trans R Soc a Math Phys Eng Sci. 2016;374:2073.
  • Ou J, Rothstein JP. Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys Fluids. 2005;17(10):103606.
  • Ou J, Perot B, Rothstein JP. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids. 2004;16(12):4635–4643.
  • Cui J, Li W, Lam WH. Numerical investigation on drag reduction with superhydrophobic surfaces by lattice-boltzmann method. Comput Math with Appl. 2011;61(12):3678–3689.
  • Zhang RL, Di QF, Wang XL, et al. Numerical study of the relationship between apparent slip length and contact angle by Lattice Boltzmann Method. J Hydrodyn. 2012;24(4):535–540. DOI:10.1016/S1001-6058(11)60275-8
  • Choi CH, Ulmanella U, Kim J, et al. Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids. 2006;18(8):087105. DOI:10.1063/1.2337669
  • El-Desoky MM, Morad I, Wasfy MH, et al. Synthesis, structural and electrical properties of PVA/TiO2 nanocomposite films with different TiO2 phases prepared by sol–gel technique. J Mater Sci Mater Electron. 2020;31(20):17574–17584. DOI:10.1007/s10854-020-04313-7
  • Mishra V, Warshi MK, Sati A, et al. Investigation of temperature-dependent optical properties of TiO2 using diffuse reflectance spectroscopy. SN Appl Sci. 2019;1(3):1–8. DOI:10.1007/s42452-019-0253-6
  • Khoee S, Bagheri Y, Hashemi A. Composition controlled synthesis of PCL–PEG Janus nanoparticles: magnetite nanoparticles prepared from one-pot photo-click reaction. Nanoscale. 2015;7(9):4134–4148.
  • León A, Reuquen P, Garín C, et al. FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl Sci. 2017;7(1):1–9. DOI:10.3390/app7010049
  • Mugundan S, Rajamannan B, Viruthagiri G, et al. Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl Nanosci. 2015;5(4):449–456. DOI:10.1007/s13204-014-0337-y
  • Wanag A, Sienkiewicz A, Rokicka-Konieczna P, et al. Influence of modification of titanium dioxide by silane coupling agents on the photocatalytic activity and stability. J Environ Chem Eng. 2020;8(4):103917. DOI:10.1016/j.jece.2020.103917
  • Xu L, Wang L, Shen Y, et al. Preparation of hexadecyltrimethoxysilane-modified silica nanocomposite hydrosol and superhydrophobic cotton coating. Fibers Polym. 2015;16(5):1082–1091. DOI:10.1007/s12221-015-1082-x
  • Razmjou A, Mansouri J, Chen V. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J Memb Sci. 2011;378(1–2):73–84.
  • Bachmann J, Gleis E, Fruhmann G, et al. Investigation of the temperature influence on the dual curing urethane-methacrylate resin Rigid Polyurethane 70 (RPU 70) in digital light synthesis (DLS). Addit Manuf. 2021;37.
  • What does resolution mean in 3D printing? [Internet]. [cited 2021 May 31]. Available from: https://formlabs.com/blog/horizontal-resolution-meaning-3d-printing/.
  • Wang X, Cai X, Guo Q, et al. I3DP, a robust 3D printing approach enabling genetic post-printing surface modification. Chem Commun. 2013;49(86):10064–10066. DOI:10.1039/c3cc45817b
  • Tricinci O, Terencio T, Mazzolai B, et al. 3D Micropatterned surface inspired by Salvinia molesta via Direct Laser Lithography. ACS Appl Mater Interfaces. 2015;7(46):25560–25567. DOI:10.1021/acsami.5b07722
  • Barahman M, Lyons AM. Ratchetlike slip angle anisotropy on printed superhydrophobic surfaces. Langmuir. 2011;27(16):9902–9909.
  • Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir. 2005;21(3):956–961. DOI:10.1021/la0401011
  • Riedel J, Vucko MJ, Blomberg SP, et al. Skin hydrophobicity as an adaptation for self-cleaning in geckos. Ecol Evol. 2020;10(11):4640–4651. DOI:10.1002/ece3.6218
  • Dalawai SP, Saad Aly MA, Latthe SS, et al. Recent advances in durability of superhydrophobic self-cleaning technology: a critical review. Prog Org Coatings. 2020;138:105381.
  • Sharma V, Balaji R, Krishnan V. Fog-harvesting properties of dryopteris marginata: role of interscalar microchannels in water-channeling.
  • Sharma V, Orejon D, Takata Y, et al. Gladiolus dalenii based bioinspired structured surface via soft lithography and its application in water vapor condensation and fog harvesting. ACS Sustain Chem Eng. 2018;6(5):6981–6993. DOI:10.1021/acssuschemeng.8b00815
  • Wu Y, Shen Y, Tao J, et al. Facile spraying fabrication of highly flexible and mechanically robust superhydrophobic F-SiO 2 @PDMS coatings for self-cleaning and drag-reduction applications. New J Chem. 2018;42(22):18208–18216. DOI:10.1039/C8NJ04275F
  • Luan K, He M, Xu B, et al. Spontaneous directional self-cleaning on the feathers of the aquatic bird anser cygnoides domesticus induced by a transient superhydrophilicity. Adv Funct Mater. 2021;2010634:1–9.
  • Panchanathan D, Kwon G, Qahtan TF, et al. Kinetics of photoinduced wettability switching on nanoporous titania surfaces under oil. Adv Mater Interfaces. 2017;4(21):1–10. DOI:10.1002/admi.201700462
  • Feng R, Song F, Xu C, et al. A quadruple-biomimetic surface for spontaneous and efficient fog harvesting. Chem Eng J. 2021;422:130119.
  • Shi R, Tian Y, Wang L. Bioinspired fibers with controlled wettability: from spinning to application. ACS Nano. 2021;15(5):7907–7930.
  • Bhushan B. Biomimetics. 3rd ed. Columbus, OH: Springer US; 2018.
  • McHale G, Shirtcliffe NJ, Evans CR, et al. Terminal velocity and drag reduction measurements on superhydrophobic spheres. Appl Phys Lett. 2009;94(6):1–6. DOI:10.1063/1.3081420
  • Dong H, Cheng M, Zhang Y, et al. Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed. J Mater Chem a. 2013;1(19):5886–5891. DOI:10.1039/c3ta10225d
  • Munson B, Young D, Okiishi T, et al. Fundamentals of fluid mechanics. Sixth ed. Welter J Dumas S, editors. USA: Wiley; 2009.
  • Liu Y, Moevius L, Xu X, et al. Pancake bouncing on superhydrophobic surfaces. Nat Phys 2014 107 [Internet]. 2014 [[cited 2022 Mar 26]];10:515–519. Available from: https://www.nature.com/articles/nphys2980
  • Guo C, Zhao D, Sun Y, et al. Droplet impact on anisotropic superhydrophobic surfaces. Langmuir. 2018;34(11):3533–3540. DOI:10.1021/acs.langmuir.7b03752
  • Baggio M, Weigand B. Numerical simulation of a drop impact on a superhydrophobic surface with a wire. Phys Fluids [Internet]. 2019;31(11):112107. doi:10.1063/1.5123593.