2,485
Views
5
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Band structures of passive films on titanium in simulated bioliquids determined by photoelectrochemical response: principle governing the biocompatibility

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 322-331 | Received 12 Feb 2022, Accepted 11 Apr 2022, Published online: 06 May 2022

References

  • Brunette DM, Tenvall P, Textor M, et al. Titanium in medicine. Berlin: Springer; 2001. doi:10.1007/978-3-642-56486-4
  • Sanderson PL, Ryan W, Turner PG. Complications of metalwork removal. Injury. 1992;23(1):29–30. doi:10.1016/0020-1383(92)90121-8
  • Hanawa T. Titanium-tissue interface reaction and its control with surface treatment. Front Bioeng Biotechnol. 2019;7:170. doi:10.3389/fbioe.2019.00170
  • Kelly EJ. Electrochemical behavior of titanium. Mod Aspect Electrochem. 1982;14:319–424. doi:10.3389/fbioe.2019.00170.
  • Asami K, Chen SC, Habazaki H, et al. The surface characterization of titanium and titanium–nickel alloys in sulfuric acid. Corros Sci. 1993;35(1–4):43–49. doi:10.1016/0010-938X(93)90131-Y
  • Hanawa T, Asami K, Asaoka K. Repassivation of titanium and surface oxide film regenerated in simulated bioliquid. J Biomed Mater Res. 1998;40:530–538. doi:10.1002/(sici)1097-4636(19980615)40:4<530::aid-jbm3>3.0.co;2-g
  • Hiji A, Hanawa T, Shimabukuro M, et al. Initial formation kinetics of calcium phosphate on titanium in Hanks’ solution characterized using XPS. Surf Interface Anal. 2021;53(2):185–193. doi:10.1002/sia.6900
  • Olver JW, Ross JW. On the standard potential of the titanium(iii)-titanium(ii) couple. J Am Chem Soc. 1963;85(17):2565–2566. doi:10.1021/ja00900a006
  • Wang L, Yu H, Wang K, et al. Local fine structural insight into mechanism of electrochemical passivation of titanium. ACS Appl Mater Interfaces. 2016;8(28):18608–18619. doi:10.1021/acsami.6b05080
  • Hiji A, Hanawa T, Yokoi T, et al. Time transient of calcium and phosphate ion adsorption by rutile crystal facets in Hanks’ solution characterized by XPS. Langmuir. 2021;37:3597–3604. doi:10.1021/acs.langmuir.0c03540
  • Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229. doi:10.1016/S0167-5729(02)00100-0
  • Di Quarto F, Piazza S, Sunseri C. The photoelectrochemistry of thin passive layers. Investigation of anodic oxide films on titanium metals. Electrochim Acta. 1993;38(1):29–35. doi:10.1016/0013-4686(93)80006-L
  • Marsh J, Gorse D. A photoelectrochemical and ac impedance study of anodic titanium oxide films. Electrochim Acta. 1998;43(7):659–670. doi:10.1016/S0013-4686(97)00210-7
  • Kim DY, Kwon HS. A study on electronic properties of passive film formed on Ti. Corros Sci Technol. 2003;2:212–218.
  • Tsuchiya H, Fujimoto S. Semiconductor properties of passive films formed on sputter-deposited Fe–18Cr alloy thin films with various additive elements. Sci Technol Adv Mater. 2004;5(1–2):195–200. doi:10.1016/j.stam.2003.10.014
  • Tsuchiya H, Fujimoto S, Shibata T. Semiconductive properties of passive films formed on Fe-18cr in borate buffer solution. J Electrochem Soc. 2004;151(2):B39–B44. doi: 10.1149/1.1639163
  • Tsuchiya H, Fujimoto S, Shibata T. Semiconductive behavior of passive films formed on Fe-Cr alloy. J Electroceram. 2006;6:9–54. doi:10.1007/s10832-006-5703-z
  • Fujimoto S, Tsuchiya H. Semiconductor properties and protective role of passive films of iron base alloys. Corros Sci. 2007;49(1):195–202. doi:10.1016/j.corsci.2006.05.020
  • Shirley DA. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B. 1972;5(12):4709–4714. doi:10.1103/PhysRevB.5.4709
  • Asami K, Hashimoto K, Shimodaira S. XPS determination of compositions of alloy surfaces and surface oxides on mechanically polished iron–chromium alloys. Corros Sci. 1977;17(9):713–723. doi:10.1016/0010-938X(77)90067-1
  • Asami K, Hashimoto K. An XPS study of the surfaces on Fe-Cr, Fe-Co and Fe-Ni alloys after mechanical polishing. Corros Sci. 1984;24(2):83–97. doi:10.1016/0010-938X(84)90039-8
  • Hanawa T, Ota M. Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials. 1991;12:767–774. doi:10.1016/0142-9612(91)90028-9
  • Tanaka Y, Nakai M, Akahori T, et al. Characterization of air-formed surface oxide film on Ti–29Nb–13Ta–4.6Zr alloy surface using XPS and AES. Corros Sci. 2008;50(8):2111–2116. doi:10.1016/j.corsci.2008.06.002
  • Hammond JS, Holubka JW, DeVries JE, et al. The application of X-ray photo-electron spectroscopy to a study of interfacial composition in corrosion-induced paint de-adhesion. Corros Sci. 1981;21(3):239–253. doi:10.1016/0010-938X(81)90033-0
  • Asami K, Hashimoto K. The X-ray photo-electron spectra of several oxides of iron and chromium. Corros Sci. 1977;17(7):559–570. doi:10.1016/S0010-938X(77)80002-4
  • Wagner CD. Photoelectron and Auger energies and the Auger parameter: a data set. In: Briggs D Seah MP, editors. Practical surface analysis. 2nd ed. New York: Wiley; 1990. pp. 595–634. doi:10.1002/jctb.280530219
  • Hanawa T, Ota M. Characterization of surface film formed on titanium in electrolyte using XPS. Appl Surf Sci. 1992;55(4):269–276. doi:10.1016/0169-4332(92)90178-Z
  • Orendorz A, Wüsten J, and Ziegler C, et al. Photoelectron spectroscopy of nanocrystalline anatase TiO2 films. Appl Surf Sci. 2005;252(1):85–88. doi:10.1016/j.apsusc.2005.02.002
  • Fusi M, Maccallini E, Caruso T, et al. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition. Surf Sci. 2011;605(3–4):333–340. doi:10.1016/j.susc.2010.10.039
  • Kurtz RL, Stock-Bauer R, Msdey TE, et al. Synchrotron radiation studies of H2O adsorption on TiO2(110). Surf Sci. 1989;218(1):178–200. doi:10.1016/0039-6028(89)90626-2
  • Singh AP, Kodan N, Mehta BR. Enhancing the photoelectrochemical properties of titanium dioxide by thermal treatment in oxygen deficient environment. Appl Surf Sci. 2016;372:63–69. doi: 10.1016/j.apsusc.2016.03.072
  • Lynch B, Wiame F, Maurice V, et al. XPS study of oxide nucleation and growth mechanisms on a model FeCrnimo stainless steel surface. Appl Surf Sci. 2022;575:151681. doi:10.1016/j.apsusc.2021.151681
  • Hanawa T, Hiromoto S, Asami K. Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS. Appl Surf Sci. 2001;183(1–2):68–75. doi:10.1016/S0169-4332(01)00551-7
  • Nagai A, Tsutsumi Y, Suzuki Y, et al. Characterization of air-formed surface oxide film on a Co–Ni–Cr–Mo alloy (MP35N) and its change in Hanks’ solution. Appl Surf Sci. 2012;258(14):5490–5498. doi:10.1016/j.apsusc.2012.02.057
  • Hanawa T, Hiromoto S, Yamamoto A, et al. XPS characterization of the surface oxide film of 316L stainless steel samples that were located in quasi-biological environments. Mater Trans. 2002;43(12):3088–3092. doi:10.2320/matertrans.43.3088
  • Tsukada M, Wakamura M, Yoshida N, et al. Band gap and photocatalytic properties of Ti-substituted hydroxyapatite: comparison with anatase-TiO2. J Mol Catal a. 2011;338:18–23. doi:10.1016/j.molcata.2011.01.017
  • Calderín L, Stott MJ, Rubio A. Electronic and crystallographic structure of apatites. Phys Rev B. 2003;67(13):134106. doi:10.1103/PhysRevB.67.134106
  • Liang L, Rulis P, Ching WY. Mechanical properties, electronic structure and bonding of α- and β-tricalcium phosphates with surface characterization. Acta Biomater. 2010;6(9):3763–3771. doi:10.1016/j.actbio.2010.03.033
  • Tsutsumi Y, Nishimura D, Doi H, et al. Difference in surface reactions between titanium and zirconium in Hanks’ solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization. Mater Sci Eng C. 2009;29(5):1702–1708. doi:10.1016/j.msec.2009.01.016
  • Kim BY, Park CJ, Kwon H. Effect of niobium on the electronic properties of passive films on zirconium alloys. J Electroanal Chem. 2005;576(2):269–276. doi:10.1016/j.jelechem.2004.11.002
  • French RH, Glass SJ, Ohuchi FS, et al. Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys Rev B. 1994;49(8):5133–5142. doi:10.1103/PhysRevB.49.5133