2,650
Views
12
CrossRef citations to date
0
Altmetric
Engineering and Structural materials

Carbon nanotube-based, serially connected terahertz sensor with enhanced thermal and optical efficiencies

ORCID Icon, , , &
Pages 424-433 | Received 27 Apr 2022, Accepted 13 Jun 2022, Published online: 05 Jul 2022

References

  • Imbault M, Burgio MD, Faccinetto A, et al. Ultrasonic fat fraction quantification using in vivo adaptive sound speed estimation. Phys Med Biol. 2018;63(21):215013. DOI:10.1088/1361-6560/aae661
  • Zhang YC, Wang LD. video-rate ring-array ultrasound and photoacoustic tomography. IEEE Trans Med Imaging. 2020;39(12):4369–4375.
  • Heddebaut M, Ghys JP, Sanz M, et al. Road traffic information using a dedicated radio beacon. Transport Res C. 2013;35:20–33.
  • Mery D, Saavedra D, Prasad M. X-ray baggage inspection with computer vision: a survey. IEEE Access. 2020;8:145620–145633.
  • Riffo V, Flores S, Mery D. Threat objects detection in x-ray images using an active vision approach. J Nondestruct Eval. 2017;36(3):44.
  • Ferguson B, Zhang XC. Materials for terahertz science and technology. Nat Mater. 2002;1(1):26–33.
  • Tonouchi M. Cutting-Edge terahertz technology. Nat Photon. 2007;1(2):97–105.
  • Kawano Y. Terahertz waves: a tool for condensed matter, the life sciences and astronomy. Contemp Phys. 2013;54(3):143–165.
  • Suzuki D, Okamoto T, Li J, et al. Terahertz and infrared response assisted by heat localization in nanoporous graphene. Carbon. 2021;173:403–409. DOI:10.1016/j.carbon.2020.10.059
  • Notake T, Iyoda T, Arikawa T, et al. Dynamical visualization of anisotropic electromagnetic re-emissions from a single metal micro-helix at THz frequencies. Sci Rep. 2021;11(1):3310. DOI:10.1038/s41598-020-80510-y
  • Spies JA, Neu J, Tayvah UT, et al. Terahertz spectroscopy of emerging materials. J Phys Chem C. 2020;124(41):22335–22346. DOI:10.1021/acs.jpcc.0c06344
  • Shiraga K, Tanaka K, Arikawa T, et al. Reconsideration of the relaxational and vibrational line shapes of liquid water based on ultrabroadband dielectric spectroscopy. Phys Chem Phys. 2018;20(41):26200–26209. DOI:10.1039/C8CP04778B
  • Maekawa T, Kanaya H, Suzuki S, et al. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl Phys Express. 2016;9(2):024101. DOI:10.7567/APEX.9.024101
  • Ito H, Ishibashi T. InP/InGaAs fermi-level managed barrier diode for broadband and low-noise terahertz-wave detection. Jpn J Appl Phys. 2016;56(1):014101.
  • Oda N. Uncooled bolometer-type terahertz focal plane array and camera for real-time imaging. C R Phys. 2010;11(7–8):496–509.
  • Otani C, Ikari T, Sasaki Y. Development of 300 GHz walk-through body scanner for the security gate applications. Proceedings of the SPIE 11827, Terahertz Emitters, Receivers, and Applications XII; 2021. p. 118270N.
  • Mine S, Kawase K, Murate K. Real-Time wide dynamic range spectrometer using a rapidly wavelength-switchable terahertz parametric source. Opt Lett. 2021;46(11):2618–2621.
  • Suzuki H, Hoshina H, Otani C. Kinetics of polymorphic transitions of cyclohexanol investigated by terahertz absorption spectroscopy. Cryst Growth Des. 2014;14(8):4087–4093.
  • Wang L. Terahertz imaging for breast cancer detection. Sensors. 2021;21(19):6465.
  • Shibata K, Umeno A, Cha KM, et al. Photon-assisted tunneling through self-assembled InAs quantum dots in the terahertz frequency range. Phys Rev Lett. 2012;109(7):077401. DOI:10.1103/PhysRevLett.109.077401
  • Ryzhii V, Ryzhii M, Shur MS, et al. Resonant plasmonic terahertz detection in graphene split-gate field-effect transistors with lateral p–n junctions. J Phys D Appl Phys. 2016;49(31):315103. DOI:10.1088/0022-3727/49/31/315103
  • Han Z, Ohno S, Minamide H. Spectral phase singularity in a transmission-type double-layer metamaterial. Optica. 2020;7(12):1721–1728.
  • Morimoto T, Joung SK, Saito T, et al. Length-dependent plasmon resonance in single-walled carbon nanotubes. ACS Nano. 2014;8(10):9897–9904. DOI:10.1021/nn505430s
  • Zhang Q, Haroz EH, Jin Z, et al. Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes. Nano Lett. 2013;13(12):5991–5996. DOI:10.1021/nl403175g
  • Yanagi K, Kanda S, Oshima Y, et al. Tuning of the thermoelectric properties of one-dimensional material networks by electric double layer techniques using ionic liquids. Nano Lett. 2014;14(11):6437–6442. DOI:10.1021/nl502982f
  • Nakai Y, Honda K, Yanagi K, et al. Giant seebeck coefficient in semiconducting single-wall carbon nanotube film. Appl Phys Express. 2014;7(2):025103. DOI:10.7567/APEX.7.025103
  • Zubair A, Wang X, Mirri F, et al. Carbon nanotube woven textile photodetector. Phys Rev Mater. 2018;2(1):015201. DOI:10.1103/PhysRevMaterials.2.015201
  • Suzuki D, Ochiai Y, Nakagawa Y, et al. Fermi-level-controlled semiconducting-separated carbon nanotube films for flexible terahertz imagers. ACS Appl Nano Mater. 2018;1(6):2469–2475. DOI:10.1021/acsanm.8b00421
  • Suzuki D, Oda S, Kawano Y. A flexible and wearable terahertz scanner. Nat Photon. 2016;10(12):809–813.
  • Suzuki D, Kawano Y. Flexible terahertz imaging systems with single-walled carbon nanotube films. Carbon. 2020;162:13–24.
  • Suzuki D, Li K, Ishibashi K, et al. A terahertz video camera patch sheet with an adjustable design based on self-aligned, 2D, suspended sensor array patterning. Adv Funct Mater. 2021;31(14):2008931. DOI:10.1002/adfm.202008931
  • Li K, Yuasa R, Utaki R, et al. Robot-assisted, source-camera-coupled multi-view broadband imagers for ubiquitous sensing platform. Nat Commun. 2021;12(1):3009. DOI:10.1038/s41467-021-23089-w
  • Li K, Suzuki D, Kawano Y. Series photothermoelectric coupling between two composite materials for a freely attachable broadband imaging sheet. Adv Photonics Res. 2021;2(3):2000095.
  • Ahmad H, Suzuki D, Kawano Y. Strain-Induced photo-thermoelectric terahertz detection. AIP Adv. 2018;8(11):115002.
  • Suzuki D, Ochiai Y, Kawano Y. Thermal device design for a carbon nanotube terahertz camera. ACS Omega. 2018;3(3):3540–3547.
  • Fukaya N, Kim DY, Kishimoto S, et al. One-step sub-10 μm patterning of carbon-nanotube thin films for transparent conductor applications. ACS Nano. 2014;8(4):3285–3293. DOI:10.1021/nn4041975
  • Llinas JP, Hekmaty MA, Talin AA, et al. Terahertz detectors realized by inkjet printing of carbon nanotube inks. ACS Appl Nano Mater. 2020;3(3):2920–2927. DOI:10.1021/acsanm.0c00182
  • Suzuki D, Serien D, Obata K, et al. Improvement in laser-based micro-processing of carbon nanotube film devices. Appl Phys Express. 2022;15(2):026503. DOI:10.35848/1882-0786/ac4d06
  • Nonoguchi Y, Nakano M, Murayama T, et al. Simple salt-coordinated n-type nanocarbon materials stable in air. Adv Funct Mater. 2016;26(18):3021–3028. DOI:10.1002/adfm.201600179
  • Hayashi S, Nawata K, Taira T, et al. Ultrabright continuously tunable terahertz-wave generation at room temperature. Sci Rep. 2014;4(1):5045. DOI:10.1038/srep05045
  • Minamide H, Hayashi S, Nawata K, et al. Kilowatt-Peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature. J Infr Millim Thz Waves. 2014;35(1):25–37. DOI:10.1007/s10762-013-0041-0
  • Takida Y, Nawata K, Minamide H. Security screening system based on terahertz-wave spectroscopic gas detection. Opt Express. 2021;29(2):2529–2537.
  • Suzuki D, Kawano Y. Terahertz imaging and spectroscopy as a tool for non-destructive and non-contact quality inspections of medical drugs and polymer films. Bunseki Kagaku. 2017;66(12):893–899.
  • Bouknia ML, Zebiri C, Sayad D, et al. Theoretical study of the input impedance and electromagnetic field distribution of a dipole antenna printed on an electrical/magnetic uniaxial anisotropic substrate. Electronics. 2021;10(9):1050. DOI:10.3390/electronics10091050
  • Ohta M, Jood P, Murata M, et al. An integrated approach to thermoelectrics: combining phonon dynamics, nanoengineering, novel materials development, module fabrication, and metrology. Adv Energy Mater. 2019;9(23):1801304. DOI:10.1002/aenm.201801304
  • Kim S, Mo JH, Jang JS. Solution-processed carbon nanotube buckypapers for foldable thermoelectric generators. ACS Appl Mater Interfaces. 2019;11(39):35675–35682.
  • Kim SL, Choi K, Tazebay A, et al. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity. ACS Nano. 2014;8(3):2377–2386. DOI:10.1021/nn405893t
  • Suemori K, Hoshino S, Kamata T. Flexible and lightweight thermoelectric generators composed of carbon nanotube–polystyrene composites printed on film substrate. Appl Phys Lett. 2013;103(15):153902.
  • Ito Y, Tanabe Y, Han J, et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv Mater. 2015;27(29):4302–4307. DOI:10.1002/adma.201501832
  • Michelis F, Bodelot L, Bonnassieux Y, et al. Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon. 2015;95:1020–1026. DOI:10.1016/j.carbon.2015.08.103
  • Yamada T, Yamamoto Y, Hayamizu Y, et al. Torsion-sensing material from aligned carbon nanotubes wound onto a rod demonstrating wide dynamic range. ACS Nano. 2013;7(4):3177–3182. DOI:10.1021/nn305593k
  • Labiano II, Arslan D, Yenigun EO, et al. Screen printing carbon nanotubes textiles antennas for smart wearables. Sensors. 2021;21(14):4934. DOI:10.3390/s21144934