2,358
Views
6
CrossRef citations to date
0
Altmetric
Focus on Metal Atom Clusters and Superatoms: From Fundamentals to Functional Nanocomposites

High performance {Nb5TaX12}@PVP (X = Cl, Br) cluster-based nanocomposites coatings for solar glazing applications

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 446-456 | Received 27 May 2022, Accepted 19 Jul 2022, Published online: 30 Aug 2022

References

  • Santamouris M. Energy in the urban built environment: the role of natural ventilation. Ghiaus C & Allard F, editors. Natural Ventilation in the Urban Environment: Assessment and Design. 2005:1–19; London: Earthscan. doi:10.4324/9781849772068
  • IPCC. Climate change 2021: the physical science basis. 2021.
  • Bastide A, Lauret P, Garde F, et al. Building energy efficiency and thermal comfort in tropical climates. Presentation of a numerical approach for predicting the percentage of well-ventilated living spaces in buildings using natural ventilation. Energy Build. 2006;38(9):1093–1103. DOI:10.1016/j.enbuild.2005.12.005
  • Granqvist CG. Solar energy material. Adv Mater. 2003;15(21):1789–1803.
  • Smith GB, Deller CA, Swift PD, et al. Nanoparticle-Doped polymer foils for use in solar control glazing. J Nanopart Res. 2002;4(1/2):157–165. DOI:10.1023/A:1020186701109
  • Zheng L, Xiong T, Shah KW. Transparent nanomaterial-based solar cool coatings: synthesis, morphologies and application. Sol Energy. 2019;193:837–858.
  • Greenberg CB. Enabling thin films for solar control transparencies: a review. J Electrochem Soc. 1993;140(11):3332.
  • Gao Q, Wu X, Huang T. Greatly improved NIR shielding performance of CuS nanocrystals by gallium doping for energy efficient window. Ceram Int. 2021;47(17):23827–23833.
  • Schelm S, Smith GB, Garrett PD, et al. Tuning the surface-plasmon resonance in nanoparticles for glazing applications. J Appl Phys. 2005;97(12):124314. DOI:10.1063/1.1924873
  • Stokes NL, Edgar JA, McDonagh AM, et al. Spectrally selective coatings of gold nanorods on architectural glass. J Nanopart Res. 2010;12(8):2821–2830. DOI:10.1007/s11051-010-9864-y
  • Xu X, Gibbons TH, Cortie MB. Spectrally-Selective gold nanorod coatings for window glass. Gold Bull. 2006;39(4):156–165.
  • Chen W, Thoreson MD, Ishii S, et al. Ultra-Thin ultra-smooth and low-loss silver films on a germanium wetting layer. Opt Express. 2010;18(5):5124–5134. DOI:10.1364/OE.18.005124
  • Chew C, Bishop P, Salcianu C, et al. Aerosol-Assisted deposition of gold nanoparticle-tin dioxide composite films. RSC Adv. 2014;4(25):13182–13190. DOI:10.1039/C3RA46828C
  • Carboni M, Carravetta M, Zhang XL, et al. Efficient NIR light blockage with matrix embedded silver nanoprism thin films for energy saving window coating. J Mater Chem C. 2016;4(8):1584–1588. DOI:10.1039/C6TC00026F
  • Sousa-Castillo A, Ameneiro-Prieto O, Comesaña-Hermo M, et al. Hybrid plasmonic nanoresonators as efficient solar heat shields. Nano Energy. 2017;37:118–125.
  • Besteiro LV, Kong XT, Wang Z, et al. Plasmonic glasses and films based on alternative inexpensive materials for blocking infrared radiation. Nano Lett. 2018;18(5):3147–3156. DOI:10.1021/acs.nanolett.8b00764
  • Granqvist CG. Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells. 2000;60(3):201–262.
  • Kang L, Gao Y, Luo H, et al. Nanoporous thermochromic VO 2 films with low optical constants, enhanced luminous transmittance and thermochromic properties. ACS Appl Mater Interfaces. 2011;3(2):135–138. DOI:10.1021/am1011172
  • Zheng H, Ou JZ, Strano MS, et al. Nanostructured tungsten oxide – properties, synthesis, and applications. Adv Funct Mater. 2011;21(12):2175–2196. DOI:10.1002/adfm.201002477
  • Guo C, Yin S, Huang L, et al. Discovery of an excellent IR absorbent with a broad working waveband: CsxWO3 nanorods. Chem Commun. 2011;47(31):8853–8855. DOI:10.1039/c1cc12711j
  • Koebel MM, Nadargi DY, Jimenez-Cadena G, et al. Transparent, conducting ATO thin films by epoxide-initiated sol–gel chemistry: a highly versatile route to mixed-metal oxide films. ACS Appl Mater Interfaces. 2012;4(5):2464–2473. DOI:10.1021/am300143z
  • Gao Y, Wang S, Luo H, et al. Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control. Energy Environ Sci. 2012;5(3):6104–6110. DOI:10.1039/c2ee02803d
  • Llordés A, Garcia G, Gazquez J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature. 2013;500(7462):323–326. DOI:10.1038/nature12398
  • Garcia G, Buonsanti R, Llordes A, et al. Near-Infrared spectrally selective plasmonic electrochromic thin films. Adv Opt Mater. 2013;1(3):215–220. DOI:10.1002/adom.201200051
  • Trenque I, Mornet S, Duguet E, et al. Encapsulation of ZnO particles by metal fluorides: towards an application as transparent insulating coatings for windows. Opt Mater. 2013;35(3):661–667. DOI:10.1016/j.optmat.2012.10.056
  • Soumya S, P MA, Paul L, et al. Near IR reflectance characteristics of PMMA/ZnO nanocomposites for solar thermal control interface films. Sol Energy Mater Sol Cells. 2014;125:102–112.
  • Kang L, Xu W, Wang K, et al. Transparent (NH4)xWO3 colloidal dispersion and solar control foils: low temperature synthesis, oxygen deficiency regulation and NIR shielding ability. Sol Energy Mater Sol Cells. 2014;128:184–189.
  • Li Y, Liu J, Liang J, et al. Tunable solar-heat shielding property of transparent films based on mesoporous Sb-Doped SnO 2 microspheres. ACS Appl Mater Interfaces. 2015;7(12):6574–6583. DOI:10.1021/am508711p
  • Gao Q, Wu X, Cai L. Dual functionality of K0.3WO3/Ag2O nanocomposites for smart window: energy saving and visible photocatalytic self-cleaning performance. Sol Energy Mater Sol Cells. 2019;196:111–118.
  • Chao L, Bao L, Wei W, et al. A review of recent advances in synthesis, characterization and NIR shielding property of nanocrystalline rare-earth hexaborides and tungsten bronzes. Sol Energy. 2019;190:10–27.
  • Yao Y, Chen Z, Wei W, et al. Cs0.32WO3/PMMA nanocomposite via in-situ polymerization for energy saving windows. Sol Energy Mater Sol Cells. 2020;215. 110656.
  • Shao J, Shen H, Gao K, et al. UV- and NIR-blocking properties of ZnO/ATO bilayer films prepared by RF magnetron sputtering. Opt Mater. 2021;118:111287.
  • Shen B, Wang Y, Lu L, et al. Enhanced spectral modulation of CsWO3 nanocrystals through anionic doping for energy-efficient glazing. Sol Energy Mater Sol Cells. 2022;236:111519.
  • Takeda H, Kuno H, Adachi K. Solar control dispersions and coatings with rare-earth hexaboride nanoparticles. J Am Ceram Soc. 2008;91:2897–2902.
  • Renaud A, Wilmet M, Truong TG, et al. Transparent tantalum cluster-based UV and IR blocking electrochromic devices. J Mater Chem C. 2017;5(32):8160–8168. DOI:10.1039/C7TC01964E
  • Nguyen TKN, Renaud A, Wilmet M, et al. New ultra-violet and near-infrared blocking filters for energy saving applications: fabrication of tantalum metal atom cluster-based nanocomposite thin films by electrophoretic deposition. J Mater Chem C. 2017;5(40):10477–10484. DOI:10.1039/C7TC02454A
  • Chen W, Wilmet M, Truong TG, et al. Embedding hexanuclear tantalum bromide cluster {Ta6Br12} into SiO2 nanoparticles by reverse microemulsion method. Heliyon. 2018;4(6):4e00654. DOI:10.1016/j.heliyon.2018.e00654
  • Nguyen TKN, Dubernet M, Matsui Y, et al. Transparent functional nanocomposite films based on octahedral metal clusters: synthesis by electrophoretic deposition process and characterization. R Soc Open Sci. 2019;6(3):181647. DOI:10.1098/rsos.181647
  • Chen W, Nguyen TKN, Wilmet M, et al. ITO@SiO2 and ITO@{M6Br12}@SiO2 (M = Nb, Ta) nanocomposite films for ultraviolet-near infrared shielding. Nanoscale Adv. 2019;1:3693–3698.
  • Lebastard C, Wilmet W, Cordier S, et al. Nanoarchitectonics of glass coatings for near-infrared shielding: from solid-state cluster-based niobium chlorides to the shaping of nanocomposite films. ACS Appl Mater Interfaces. 2022;14(18):21116–21130. DOI:10.1021/acsami.2c00308
  • Lebastard C, Wilmet M, Cordier S, et al. Controlling the Deposition Process of Nanoarchitectonic Nanocomposites Based on {nb6−xtaxxi12}n+ Octahedral Cluster-Based Building Blocks (Xi = Cl, Br; 0 ≤ x ≤ 6, n = 2, 3, 4) for UV-NIR blockers coating applications. Nanomaterials. 2022;12(12):2052. DOI:10.3390/nano12122052
  • Eisenbraun R, Schafer H. Drei wege zur oxydation von [Ta6Cl12]2+ ([Ta6Br12]2+ und [Nb6Cl12]2+) Z. Anorg Allg Chem. 1985;530(11):222–226.
  • Parsons JA, Vongvusharintra A, Koknat FW. High temperature conproportionation of niobium pentahalide and niobium metal; a convenient route to hydrated cluster halides Nb6Cl14·8H2O and Nb6Br14·8H2O. Inorg Nucl Chem Lett. 1972;8(3):281–286.
  • Koknat FW, Parsons JA, Vongvusharintra A. Metal cluster halide complexes. I. Efficient synthesis of hydrated hexanuclear niobium and tantalum cluster halides M6X14.8H2O. Inorg Chem. 1974;13(7):1699–1702.
  • Wilmet M, Lebastard C, Sciortino F, et al. Revisiting properties of edge-bridged bromide tantalum clusters in the solid-state, in solution and vice versa : an intertwined experimental and modelling approach. Dalton Trans. 2021;50(23):8002–8016. DOI:10.1039/D0DT04200E
  • Robin MB, Na K. Color and nonintegral valence in niobium and tantalum subhalides. Inorg Chem. 1965;4(7):978–984.
  • Schäfer H, Spreckelmeyer B. Die verbindung Nb6Cl16·3C2H5OH. J Less-Common Met. 1966;11:74–75.
  • Preetz W, Harder K. Trennung und charakterisierung der metallgemischten cluster [(NbnTa6-n)Cli12]2+, n = 0-6. Z. Anorg Allg Chem. 1991;597:163–172. DOI:10.1002/zaac.19915970119
  • Wilmet M. Thesis Rennes 1 Univ. 2018. Available from: http://www.theses.fr/2018REN1S108
  • Lebastard C. Thesis Rennes 1 Univ. 2021. in press. Available from: http://www.theses.fr/s211547
  • Kurakula M, Koteswara Rao GSN. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): as excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Deliv Sci Technol. 2020;60:102046–102069.
  • Younes M, Aquilina G, Castle L, et al. Re-Evaluation of polyvinylpyrrolidone (E 1201) and polyvinylpolypyrrolidone (E 1202) as food additives and extension of use of polyvinylpyrrolidone (E 1201. EFSA J. 2020;18(8):e06215.
  • Aslan M, Weingarth D, Jäckel N, et al. Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes. J Power Sources. 2014;266:374–383.
  • Selvam S, Balamuralitharan B, N KS, et al. Novel high-temperature supercapacitor combined dye sensitized solar cell from a sulfated β-cyclodextrin/pvp/mnco 3 composite. J Mater Chem A. 2015;3(19):10225–10232. DOI:10.1039/C5TA01792K
  • Kotok V, Vadym K. A Study of the influence of polyvinyl pyrrolidone concentration in the deposition electrolyte on the properties of electrochromic Ni(OH)2 films. East-Eur J Enterp Technol. 2020;4/6(106):31–37.
  • Kozlov DA, Shcherbakov AB, Kozlova TO, et al. Photochromic and photocatalytic properties of ultra-small PVP-stabilized WO3 nanoparticles. Molecules. 2019;25(1):154–170. DOI:10.3390/molecules25010154
  • Wu K, Li H, Klimov VI. Tandem luminescent solar concentrators based on engineered quantum dots. Nat Photonics. 2018;12(2):105–110.
  • Zha H, Liu G, Han G. High-Performance laminated luminescent solar concentrators based on colloidal carbon quantum dots. Nanoscale Adv. 2019;1(12):4888–4894.
  • Li Y, Zhang X, Zhang Y, et al. Review on the role of polymers in luminescent solar concentrators. J Polym Sci a Polym Chem. 2019;57(3):201–215. DOI:10.1002/pola.29192
  • Kim A, Hosseinmardi A, Annamalai PK, et al. Review on colloidal quantum dots luminescent solar concentrators. ChemistrySelect. 2021;6(20):4948–4967. DOI:10.1002/slct.202100674
  • Aubert T, Nerambourg N, Saito N, et al. Tunable visible emission of luminescent hybrid nanoparticles incorporating two complementary luminophores: ZnO nanocrystals and [Mo 6 Br 14] 2− nanosized cluster units. Part Part Syst Charact. 2013;30(1):90–95. DOI:10.1002/ppsc.201200047
  • Truong TG, Dierre B, Grasset F, et al. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films. Sci Technol Adv Mater. 2016;17(1):443–453. DOI:10.1080/14686996.2016.1202724
  • Allen RJ, Sheldon JC. Some studies of Nb6Cl14,7H2O and analogous compounds. Aust J Chem. 1965;18(3):277–283.
  • Hughes BG, Meyer JL, Fleming PB, et al. Chemistry of polynuclear metal halides. III Synthesis of some Niobium and Tantalum M6X12n+ cluster derivatives. Inorg Chem. 1970;9(6):1343–1346. DOI:10.1021/ic50088a010
  • Ariga K, Nishikawa M, Mori T, et al. Self-Assembly as a key player for materials nanoarchitectonics. Sci Technol Adv Mater. 2019;20(1):51–95. DOI:10.1080/14686996.2018.1553108