3,385
Views
24
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Biocompatibility of titanium from the viewpoint of its surface

ORCID Icon
Pages 457-472 | Received 29 Jun 2022, Accepted 19 Jul 2022, Published online: 15 Aug 2022

References

  • Brunette DM, Tenvall P, Textor M, et al. Titanium in medicine. Berlin: Springer; 2001. DOI:10.1007/978-3-642-56486-4
  • Hanawa T. Titanium-Tissue interface reaction and its control with surface treatment. Front Bioeng Biotechnol. 2019;7:170.
  • Hanawa T. Zirconia versus titanium in dentistry: A review. Dent Mater J. 2020;39(1):24–36.
  • Tschernitschek H, Borchers L, Geurtsen W. Nonalloyed titanium as a bioinert metal—a review. J Prosth Dent. 2006;96(1):12.
  • William DF. Definitions in biomaterials. Proceedings of a Consensus Conference of the European Society for Biomaterials, Vol. 4, Chester, England, New York, NY: Elsevier; 1987.
  • Brånemark PI, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plasti Reconstr Surg Suppl. 1977;16:1–132.
  • Rupp F, Liang L, Geis-Gerstorfer J, et al. Surface characteristics of dental implants: A review. Dent Mater. 2018;34(1):40–57.
  • Shah FA, Thomsen P, Palmquist A. A review of the impact of implant biomaterials on osteocytes. J Dent Res. 2018;97(9):977–986.
  • Shah FA, Thomsen P, Palmquist A. Osseointegration and current interpretations of bone-implant interface. Acta Biomater. 2019;84:1–15.
  • Sanderson PL, Ryan W, Turner PG. Complications of metalwork removal. Injury. 1992;23(1):29–30.
  • Speck KM, Fraker AC. Anodic polarization behavior of Ti-Ni and Ti-6al-4V in simulated physiological solutions. J Dent Res. 1980;59(10):1590–1595.
  • Nakayama Y, Yamamuro T, Kumar P, et al. Anodic polarization measurements of orthopaedic implant alloys in bovine serum albumin. J Appl Biomater. 1990;1(4):307–313.
  • Nakayama Y, Yamamuro T, Kotoura Y, et al. In vivo measurement of anodic polarization of orthopaedic implant alloys: Comparative study of in vivo and in vitro experiments. Biomaterials. 1989;10(6):420–424.
  • Asri RIM, Harun WSW, Samykano M, et al. Corrosion and surface modification on biocompatible metals: A review. Mater Sci Eng C. 2017;77:1261–1274.
  • Manam NS, Harum WSW, Shri DNA, et al. Study of corrosion in biocompatible metals for implants: A review. J Alloy Compound. 2017;701:698–715.
  • Eliaz N. Corrosion of metallic biomaterials: A review. Materials. 2019;12(3):407.
  • Meachin G, Williams DF. Change in non-osseous tissue adjacent to titanium implants. J Biomed Mater Res. 1973;7:555–572.
  • Woodman JL, Jacobs JJ, Galante JO, et al. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: A long-term study. J Orthop Res. 1984;1(4):421–430.
  • Bessho K, Fujimura K, Iizuka T. Experimental long-term study of titanium ions eluted from pure titanium miniplates. J Biomed Mater Res. 1995;29(7):901–904.
  • Ektessabi AM, Otsuka T, Tsuboi Y, et al. Application of micro beam PIXE to detection of titanium ion release from dental and orthopaedic implants. Int J PIXE. 1994;4:81–91.
  • Ektessabi AM, Otsuka T, and Tsuboi Y, et al. Preliminary experimental results on mapping of the elemental distribution of organic tissues surrounding titanium-alloy implants. Nucl Instr Meth Phys Res B. 1996;109-110:278–283.
  • Bianco PD, Ducheyne P, Cuckler JM. Local accumulation of titanium released from a titanium implant in the absence of wear. J Biomed Mater Res. 1996;31:227–234.
  • Williams RL, Brown SA, Merritt K. Electrochemical studies on the influence of proteins on the corrosion of implant alloys. Biomaterials. 1988;9(2):181–186.
  • Clark GCF, Williams DF. The effects of proteins on metallic corrosion. J Biomed Mater Res. 1982;16(2):125–134.
  • Merritt K, Brown SA. Effect of proteins and pH on fretting corrosion and metal ion release. J Biomed Mater Res. 1988;22(2):111–120.
  • Bruneel N, Helsen JA. In vitro simulation of biocompatibility of Ti-Al-V. J Biomed Mater Res. 1988;22(3):203–214.
  • Ryhanen J, Niemi E, Serlo W, et al. Biocompatibility of nickel-titanium shape memory metal and its corrosion behaviour in human cell cultures. J Biomed Mater Res. 1997;35:451–457.
  • Hanawa T, Kohyama Y, Hiromoto S, et al. Effects of biological factors on the repassivation current of titanium. Mater Trans. 2004;45(5):1635–1639.
  • Tang L, Eaton JW. Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med. 1993;178(6):2147–2156.
  • Tengvall P, Lundström I, Sjöqvist L, et al. Titanium-Hydrogen peroxide interaction: Model studies of the influence of the inflammatory response on titanium implants. Biomaterials. 1989;10(3):166–175.
  • Pan J, Liao H, Leygraf C, et al. Variation of oxide films on titanium induced by osteoblast-like cell culture and the influence of an H2O2 pretreatment. J Biomed Mater Res. 1998;40:244–256.
  • Mu Y, Kobayashi T, Sumita M, et al. Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro. J Biomed Mater Res. 2000;49:238–243.
  • Mu Y, Kobayashi T, Tsuji K, et al. Causes of titanium release from plate and screws implanted in rabbits. J Mater Sci Mater Med. 2002;13(6):583–588.
  • Hanawa T. Overview of metals and applications. In: Duxford BNM, editor. Metals for medical devices. 2nd ed. UK: Wodhead; 2019. p. 3–30. DOI:10.1016/B978-0-08-102666-3.00001-8
  • Ilevbare GO, Burstein GT. The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels. Corros Sci. 2001;43(3):485–513.
  • Akazawa T, Minami S, Takahashi K, et al. Corrosion of spinal implants retrieved from patients with scoliosis. J Orthop Res. 2005;10:200–205.
  • Tomizawa Y, Hanawa T, Kuroda D, et al. Corrosion of stainless sternal wire after long-term implantation. J Artif Organ. 2006;9(1):61–66.
  • Hiromoto S, Onodera E, Chiba A, et al. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co–Cr–Mo alloys. Biomaterials. 2005;26(24):4912–4923.
  • Tsustumi Y, Doi H, Nomura N, et al. Surface composition and corrosion resistance of Co-Cr alloys containing high chromium. Mater Trans. 2016;57(12):2033–2040.
  • Ikeda T, Takahashi K, Kabata T, et al. Polyneuropathy caused by cobalt–chromium metallosis after total hip replacement. Muscle Nerve. 2010;42(1):140–143.
  • Czekaj J, Ehlinger M, Rahme M, et al. Metallosis and cobalt – chrome intoxication after hip resurfacing arthroplasty. Orthop Sci. 2016;21(3):389–394.
  • Hallab NJ, Frank Chan FW, Harper ML. Quantifying subtle but persistent peri-spine inflammation in vivo to submicron cobalt–chromium alloy particles. Europ Spine J. 2012;21(12):2649–2658.
  • Hanawa T, Asami K, Hiromoto S. Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS. Appl Surf Sci. 2001;183(1–2):68–75.
  • Nagai A, Tsutsumi Y, Suzuki Y, et al. Characterization of air-formed surface oxide film on a Co–Ni–Cr–Mo alloy (MP35N) and its change in Hanks’ solution. Appl Surf Sci. 2012;258(14):5490–5498.
  • Kocijan A, Milošev I, Pihlar B. Cobalt-Base alloys for orthopaedic applications studied by electrochemical and XPS analysis. J Mater Sci Mater Med. 2004;15(6):643–650.
  • Hiromoto S, Kano K, Suzuki Y, et al. Surface characterization and anodic polarization of nitrogen-ion-implanted Nickel-Free Co–Cr–Mo alloy. Mater Trans. 2005;46(7):1627–1632.
  • Milošev I, Strehblow HH. The composition of the surface passive film formed on CoCrmo alloy in simulated physiological solution. Electrochim Acta. 2002;48:2767–2774.
  • Maruyama N, Kawasaki H, Yamamoto A, et al. Friction-wear properties of Nickel-Free Co–Cr–Mo alloy in a simulated body fluid. Mater Trans. 2005;46(7):1588–1592.
  • Hanawa T, Nakazawa K, Kano K, et al. Friction-wear properties of Nitrogen-Ion-Implanted Nickel-Free Co–Cr–Mo alloy. Mater Trans. 2005;46(7):1593–1596.
  • Heintz C, Riepe G, Birken L, et al. Corroded nitinol wires in explanted aortic endografts: An important mechanism of failure? J Endovasc Ther. 2001;8(3):248–253.
  • Guidoin R, Marois Y, Douville Y, et al. First-Generation aortic endografts: analysis of explanted stentor devices from the EUROSTAR registry. J Endovasc Ther. 2000;7(2):105–122.
  • Chen P, Nagai A, Tsutsumi Y, et al. Differences in the calcification of preosteoblast cultured on sputter-deposited titanium, zirconium, and gold. J Biomed Mater Res. 2016;104A:639–651.
  • Itakura Y, Tajima T, Ohoke S, et al. Osteocompatibility of platinum-plated titanium assessed in vitro. Biomaterials. 1989;10(7):489–493.
  • Revie RW, Uhlig HH. Corrosion and corrosion control: an introduction to corrosion science and engineering. 4th ed. Berlin: Wiley; 2008. DOI:10.1002/9780470277270
  • Kelly EJ. Electrochemical behavior of titanium. Mod Aspect Electrochem. 1982;14:319–424.
  • Eda Y, Manaka T, Hanawa T, et al. X-Ray photoelectron spectroscopy-based valence band spectra of passive films on titanium. Surf Interface Anal. 2022;54(8):892–898.
  • Asami K, Chen SC, Habazaki H, et al. The surface characterization of titanium and titanium–nickel alloys in sulfuric acid. Corros Sci. 1993;35(1–4):43–49.
  • Silverman DC. Application of EMF-pH diagrams to corrosion prediction. Corrosion. 1982;38(10):541–549.
  • Olver JW, Ross JW. On the standard potential of the titanium(iii)-titanium(ii) couple. J Am Chem Soc. 1963;85(17):2565–2566.
  • Beck TR. Electrochemistry of freshly-generated titanium surfaces. I. Scraped-rotating-disk experiments. Electrochim Acta. 1973;18:807–814.
  • Asami K, Hashimoto K. The X-ray photo-electron spectra of several oxides of ion and chromium. Corros Sci. 1977;17(7):559–570.
  • Hanawa T, Asami K, Asaoka K. Repassivation of titanium and surface oxide film regenerated in simulated bioliquid. J Biomed Mater Res. 1998;40:530–538.
  • Hiji A, Hanawa T, Shimabukuro M, et al. Initial formation kinetics of calcium phosphate on titanium in Hanks’ solution characterized using XPS. Surf Interface Anal. 2021;53(2):185–193.
  • Wang L, Yu H, Wang K, et al. Local fine structural insight into mechanism of electrochemical passivation of titanium. ACS Appl Mater Interfaces. 2016;8(28):18608–18619. https://doi.org/10.1021/acsami.6b05080
  • Hiji A, Hanawa T, Yokoi T, et al. Time transient of calcium and phosphate ion adsorption by rutile crystal facets in Hanks’ solution characterized by XPS. Langmuir. 2021;37(12):3597–3604.
  • Breeson AC, Sankar G, Goh GKL, et al. Phase quantification by X-ray photoemission valence band analysis applied to mixed phase TiO2 powders. Appl Surf Sci. 2017;423:205–209.
  • Singh AP, Kodan N, Mehta BR. Enhancing the photoelectrochemical properties of titanium dioxide by thermal treatment in oxygen deficient environment. Appl Surf Sci. 2016;372:63–69.
  • Kim SC, Hanawa T, Manaka T, et al. Band structures of passive films on titanium in simulated bioliquids determined by photoelectrochemical response: Principle governing the biocompatibility. Sci Technol Adv Mater. 2022;23(1):322–331.
  • Boehm HP. Functional groups on the surfaces of solids. Angew Chem. 1966;5(6):533–544.
  • Boehm HP. Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss Faraday Soc. 1971;52:264–289.
  • Parfitt GD. The surface of titanium dioxide. Prog Surf Membr Sci. 1976;11:181–226.
  • Westall J, Hohl H. A comparison of electrostatic models for the oxide/solution interface. Adv Colloid Interface Sci. 1980;12(4):265–294.
  • Lide DR editor. CRC handbook of chemistry and physics. 87th ed. Boca Raton, FL: CRC Press; 2006. p. 6–2.
  • Sundgren JE, Bodö P, Ivarsson B, et al. Adsorption of fibrinogen on titanium and gold surfaces studied by esca and ellipsometry. J Colloid Interface Sci. 1986;113(2):530–543.
  • Hanawa T, Ota M. Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials. 1991;12(8):767–774.
  • Hanawa T, Ota M. Characterization of surface film formed on titanium in electrolyte using XPS. Appl Surf Sci. 1992;55(4):269–276.
  • Healy KE, Ducheyne P. The mechanisms of passive dissolution of titanium in a model physiological environment. J Biomed Mater Res. 1992;26(3):319–338.
  • Serro AP, Fernandes AC, Saramago B, et al. Apatite deposition on titanium surfaces — the role of albumin adsorption. Biomaterials. 1997;18(14):963–968.
  • Frauchiger L, Taborelli M, Aronsson BO, et al. Ion adsorption on titanium surfaces exposed to a physiological solution. Appl Surf Sci. 1999;143(1–4):67–77.
  • Hiromoto S, Hanawa T, Asami K. Composition of surface oxide film of titanium with culturing murine fibroblasts L929. Biomaterials. 2004;25(6):979–986.
  • Sundgren JE, Bodo P, Lundstrom I. Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel. J Colloid Interface Sci. 1986;110(1):9–20.
  • Esposito M, Lausmaa J, Hirsch JM, et al. Surface analysis of failed oral titanium implants. J Biomed Mater Res. 1999;48(4):559–568.
  • Sundell G, Dahlin C, Andersson M, et al. The bone-implant interface of dental implants in humans on the atomic scale. Acta Biomater. 2017;48:445–450.
  • Tsutsumi Y, Nishimura D, Doi H, et al. Calcium phosphate formation on titanium and zirconium and its application to medical devices. Mater Sci Eng C. 2009;29:1702–1708.
  • Tsutsumi Y, Nishisaka T, Doi H, et al. Reaction of calcium and phosphate ions with titanium, zirconium, niobium, and tantalum. Surf Interface Anal. 2015;47(13):1148–1154.
  • Hodgson AWE, Mueller Y, Forster D, et al. Electrochemical characterisation of passive films on Ti alloys under simulated biological conditions. Electrochim Acta. 2002;47(12):1913–1923.
  • Chávez-Díaz MP, Luna-Sánchez R, Vazquez-Arenas J, et al. XPS and EIS studies to account for the passive behavior of the alloy Ti-6al-4V in Hank’s solution. J Solid State Electrochem. 2019;23(11):3187–3196.
  • Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229.
  • Gao Q, Wu X, Fan Y, et al. Low temperature fabrication of nanoflower arrays of rutile TiO2 on mica particles with enhanced photocatalytic activity. J Alloy Comp. 2013;579:322–329.
  • Yan M, Chen F, Zhang J, et al. Preparation of controllable crystalline titania and study on the photocatalytic properties. J Phys Chem B. 2005;109(18):8673–8678.
  • Stone JV, Davis RJ. Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves. Chem Mater. 1998;10(5):1468–1474.
  • Miao L, Tanemura S, Kondo Y, et al. Microstructure and bactericidal ability of photocatalytic TiO2 thin films prepared by RF helicon magnetron sputtering. Appl Surf Sci. 2004;238(1–4):125–131.
  • Magnan H, Stanescu D, Rioult M, et al. Epitaxial TiO2 thin film photoanodes: influence of crystallographic structure and substrate nature. J Phys Chem C. 2019;123(9):5240–5248.
  • Quarto FD, Zaffora A, Franco FD, et al. Critical review—photocurrent spectroscopy in corrosion and passivity studies: a critical assessment of the use of band gap value to estimate the oxide film composition. J Electrochem Soc. 2017;164(12):C671–C681.
  • Fonseca-Cervantes OR, Pérez-Larios A, Arellano VHR, et al. Effects in band gap for photocatalysis in TiO2 support by adding gold and ruthenium. Processes. 2020;8(9):1032.
  • Kollbek K, Sikora M, Kapusta C, et al. X-Ray spectroscopic methods in the studies of nonstoichiometric TiO2-X thin film. Appl Surf Sci. 2013;281:100–104.
  • Ju Y, Li L, Wu Z, et al. Effect of oxygen partial pressure on the optical property of amorphous titanium oxide thin films. Energy Proced. 2011;12:450–455.
  • Valencia S, Marín JM, Restrepo G. Study of the bandgap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment. Open Mater Sci J. 2010;4(2):9–14.
  • Di Quarto F, Piazza S, Sunseri C. The photoelectrochemistry of thin passive layers. Investigation of anodic oxide films on titanium metals. Electrochim Acta. 1993;38(1):29–35.
  • Marsh J, Gorse D. A photoelectrochemical and ac impedance study of anodic titanium oxide films. Electrochim Acta. 1998;43(7):659–670.
  • Kim DY, Kwon HS. A study on electronic properties of passive film formed on Ti. Corros Sci Technol. 2003;2:212–218.
  • French RH, Glass SJ, Ohuchi FS, et al. Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys Rev B. 1994;49(8):5133–5142.
  • Jiang H, Gomez-Abal RI, Rinke P, et al. Electronic band structure of zirconia and hafnia polymorphs from the GW perspective. Phys Rev B. 2010;81(8):085119.
  • Králik B, Chang EK, Louie SG. Structural properties and quasiparticle band structure of zirconia. Phys Rev B. 1998;57(12):7027.
  • Li J, Meng S, Niu J, et al. Electronic structures and optical properties of monoclinic ZrO2 studied by first-principles local density approximation + U approach. J Adv Ceram. 2017;6(1):43–49.
  • Sayan S, Bartynski RA, Zhao X, et al. Valence and conduction band offsets of a ZrO2/SiOxNy/n-Si CMOS gate stack: a combined photoemission and inverse photoemission study. Phys Status Solid B. 2004;241(10):2246–2252.
  • Bersch E, Rangan S, Bartynski RA, et al. Band offsets of ultrathin high-κ oxide films with Si. Phys Rev B. 2008;78(8):085114.
  • Puthenkovilakam R, Chang JP. Valence band structure and band alignment at the ZrO2/Si interface. Appl Phys Lett. 2004;84(8):1353.
  • Miyazaki S. Photoemission study of energy-band alignments and gap-state density distributions for high-κ gate dielectrics. J Vac Sci Technol B. 2001;19(6):2212.
  • Nohira H, Tsai W, Besling W, et al. Characterization of ALCVD-Al2O3 and ZrO2 layer using X-ray photoelectron spectroscopy. J Non-Cryst Solid. 2002;303(1):83–87.
  • Ikarashi N, Manabe K. Electronic structure analysis of Zr silicate and Hf silicate films by using spatially resolved valence electron energy-loss spectroscopy. J Appl Phys. 2003;94(1):480.
  • Balog M, Schieber M, Michiman M, et al. In situ formation of protective oxide scales as measured by their inhibiting effect on the high temperature hydrogen permeability of heat exchanger materials. Thin Solid Film. 1977;41:247–255.
  • Zhu L, Fang Q, He G, et al. Spectroscopic ellipsometry characterization of ZrO2 thin films by nitrogen-assisted reactive magnetron sputtering. Mater Sci Semicond Process. 2006;9(6):1025–1030.
  • Venkataraj S, Kappertz O, Weis H. Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering. J Appl Phys. 2002;92(7):3599.
  • Kosacki I, Petrovsky V, Anderson HU. Band gap energy in nanocrystalline ZrO2:16%Y thin films. Appl Phys Lett. 1999;74(3):341.
  • PaiVermeker VR, Petelin AN, Crowne FJ, et al. Color-center-induced band gap shift in yttria-stabilized zirconia. Phys Rev B. 1989;40(12):8555.
  • Kim BY, Park CJ, Kwon HS. Effect of niobium on electronic properties of passive films on zirconium alloys. J Electroanaly Chem. 2005;576:269–278.
  • Takahashi K, Uno M, Okui M, et al. Photoelectrochemical properties and band structure of oxide films on zirconium–transition metal alloys. J Alloy Comp. 2006;421(1–2):3030–308.
  • Tanaka Y, Nakai M, Akahori T, et al. Characterization of air-formed surface oxide film on Ti–29Nb–13Ta–4.6Zr alloy surface using XPS and AES. Corros Sci. 2008;50(8):2111–2116.
  • Di Franco E, Zampardi G, Santamaria M, et al. Characterization of the solid state properties of anodic oxides on magnetron sputtered Ta, Nb, and Ta-Nb alloys. J Electrochem Soc. 2012;159:C33–C39.
  • Lee J, Lu W, Kioupakis E. Electronic properties of tantalum pentoxide polymorphs from first-principles calculations. Appl Phys Lett. 2014;105(20):202108.
  • Hur JH. First principles study of the strain effect on band gap of γ phase Ta2O5. Comp Mater Sci. 2019;164:17–21.
  • Silva RA, Walls M, Rondot B, et al. Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery. J Mater Sci Mater Med. 2002;13(5):495–500.
  • Mickova I. Photoelectrochemical study of anodically formed oxide films on niobium surfaces. Croat Chem Acta. 2010;83:113–120.
  • Arita M, Hayashi Y. Photoelectrochemical properties of anodic oxide film on niobium. Mater Trans Jim. 1994;35(4):233–237.
  • Nozik AJ. Photoelectrochemistry: Applications to solar energy conversion. Ann Rev Phys Chem. 1978;29(1):189–222.
  • Viet A, Jose R, Reddy M, et al. Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph. J Phys Chem. 2010;114:21795–21800.
  • Habibi MH, Mokhtari R. Novel sulfur-doped niobium pentoxide nanoparticles: Fabrication, characterization, visible light sensitization and redox charge transfer study. J Sol-Gel Sci. 2011;59(2):352–357.
  • Liu J, Xue D, Li K. Single-Crystalline nanoporous Nb2O5 nanotubes. Nanoscale Res Lett. 2011;6(1):138.
  • Sathasivam S, Williamson BAD, Althabaiti SA, et al. Chemical vapor deposition synthesis and optical properties of Nb2O5 thin films with hybrid functional theoretical insight into the band structure and band gaps. ACS Appl Mater Interface. 2017;9(21):18031–18038.
  • Nunes BN, Lopes OF, Patrocinio AOT, et al. Recent advances in niobium-based materials for photocatalytic solar fuel production. Catalysts. 2020;10(1):126.
  • Kamari HM, Al-Hada NM, Baqer AA, et al. Comprehensive study on morphological, structural and optical properties of Cr2O3 nano particle and its antibacterial activities. J Mater Sci Mater El. 2019;30(8):8035–8046.
  • Moore EA. First-Principles study of the mixed oxide α−FeCrO3. Phys Rev B. 2007;76(19):195107.
  • Praveen CS, Timon V, Valant M. Electronic band gaps of ternary corundum solid solutions from Fe2O3-Cr2O3-Al2O3 system for photocatalytic applications: A theoretical study. Comp Mater Sci. 2012;55:192–198.
  • Sudesh TL, Wijesinghe L, Blackwood DJ. Electrochemical & optical characterisation of passive films on stainless steels. J Phys Conf Ser. 2006;28:74–78.
  • Tsuchiya H, Fujimoto S. Semiconductor properties of passive films formed on sputter-deposited Fe-18cr alloy thin films with various additive elements. Sci Technol Adv Mater. 2004;5:195–200.
  • Tsuchiya H, Fujimoto S, Chihara O, et al. Semiconductive behavior of passive films formed on pure Cr and Fe–Cr alloys in sulfuric acid solution. Electrochim Acta. 2002;47(27):4357–4366.
  • Fujimoto S, Tsuchiya H. Semiconductor properties and protective roles of passive films of iron base alloys. Corros Sci. 2007;49(1):195–202.
  • Tsuchiya H, Fujimoto S, Shibata T. Semiconductive properties of passive films formed on Fe-18cr in borate buffer solution. J Electrochem Soc. 2004;151(2):B39–B44.
  • Tsuchiya H, Fujimoto S, Shibata T. Semiconductive properties of passive films formed on Fe-Cr alloy. J Electroceram. 2006;16(1):49–54.