4,587
Views
12
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

A review on control of droplet motion based on wettability modulation: principles, design strategies, recent progress, and applications

&
Pages 473-497 | Received 22 Jun 2022, Accepted 09 Aug 2022, Published online: 06 Sep 2022

References

  • Gennes PG, Brochard-Wyart F, Quéré D. Capillarity and wetting phenomena. New York (NY): Springer; 2004.
  • Butt HJ, Graf K, Kappl M. Physics and chemistry of interfaces. Germany: John Wiley & Sons; 2013.
  • Si Y, Dong Z, Jiang L. Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Cent Sci. 2018;4:1102–1112.
  • Leidenfrost JG. On the fixation of water in diverse fire. Int J Heat Mass Transf. 1966;9:1153–1166.
  • Académie des Sciences (Paris). Histoire de l’Académie Royale des Sciences: avec les mémoires de mathématique et de physique pour la même année: tirés des registres de cette Académie. 1753 ( 1757). France: DuPont; 1757.
  • Young TsIII. An essay on the cohesion of fluids. Philos Trans R Soc London. 1805;95:65–87.
  • Marangoni C. Sull’espansione delle goccie d’un liquido galleggianti sulla superfice di altro liquido (Fratelli Fusi). France; 1865.
  • American Academy of Arts. Proceedings of the Academy of Arts and Science. USA: Metcalf and Company; 1878.
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28:988–994.
  • Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–551.
  • Dettre RH, Johnson RE. Contact angle hysteresis contact angle, wettability, and adhesion. Adv Chem Ser. 1964;43:136–144.
  • Ollivier H. Recherches sur la capillarité. J Phys Théor Appl. 1907;6:757–782.
  • Carraher CEsJr. Introduction to polymer chemistry. UK: CRC Press; 2017.
  • Langmuir I. The mechanism of the surface phenomena of flotation. Trans Faraday Soc. 1920;15:62–74.
  • Kreder MJ, Alvarenga J, Kim P, et al. Design of anti-icing surfaces: smooth, textured or slippery? Nat Rev Mater. 2016;1:1–15.
  • Ulman A. Formation and structure of self-assembled monolayers. Chem Rev. 1996;96:1533–1554.
  • Onda T, Shibuichi S, Satoh N, et al. Super-Water-Repellent fractal surfaces. Langmuir. 1996;12:2125–2127.
  • Wang R, Hashimoto K, Fujishima A, et al. Light-Induced amphiphilic surfaces. Nature. 1997;388:431–432.
  • Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202:1–8.
  • Aussillous P, Quéré D. Liquid marbles. Nature. 2001;411:924–927.
  • Tuteja A, Choi W, Ma M, et al. Designing superoleophobic surfaces. Science. 2007;318:1618–1622.
  • Quéré D. Non-Sticking drops. Rep Prog Phys. 2005;68:2495.
  • Lafuma A, Quéré D. Slippery pre-suffused surfaces. EPL. 2011;96:56001.
  • Wong T-S, Kang SH, Tang SKY, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature. 2011;477:443–447.
  • Villegas M, Zhang Y, Abu Jarad N, et al. Liquid-Infused surfaces: a review of theory, design, and applications. ACS Nano. 2019;13:8517–8536.
  • Feng L, Li S, Li Y, et al. Super-Hydrophobic surfaces: from natural to artificial. Adv Mater. 2002;14:1857–1860.
  • Wang S, Liu K, Yao X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev. 2015;115:8230–8293.
  • Tian Y, Su B, Jiang L. Interfacial material system exhibiting superwettability. Adv Mater. 2014;26:6872–6897.
  • Dai H, Dong Z, Jiang L. Directional liquid dynamics of interfaces with superwettability. Sci Adv. 2020;6:eabb5528.
  • Abbott NL, Folkers JP, Whitesides GM. Manipulation of the wettability of surfaces on the 0.1- to 1 -micrometer scale through micromachining and molecular self-assembly. Science. 1992;257:1380–1382.
  • Li J, Li J, Sun J, et al. Biological and engineered topological droplet rectifiers. Adv Mater. 2019;31:e1806501.
  • Cui Y, Li D, Bai H. Bioinspired smart materials for directional liquid transport. Ind Eng Chem Res. 2017;56:4887–4897.
  • Li J, Song Y, Zheng H, et al. Designing biomimetic liquid diodes. Soft Matter. 2019;15:1902–1915.
  • Liu M, Wang S, Jiang L. Nature-Inspired superwettability systems. Nat Rev Mater. 2017;2:1–17.
  • Daniel D, Timonen JVI, Li R, et al. Origins of extreme liquid repellency on structured, flat, and lubricated hydrophobic surfaces. Phys Rev Lett. 2018;120:244503.
  • Tuteja A, Choi W, Mabry JM, et al. Robust omniphobic surfaces. Proc Natl Acad Sci USA. 2008;105:18200–18205.
  • Deng X, Mammen L, Butt H-J, et al. Candle soot as a template for a transparent robust superamphiphobic coating. Science. 2012;335:67–70.
  • Yong J, Chen F, Yang Q, et al. Superoleophobic surfaces. Chem Soc Rev. 2017;46:4168–4217.
  • Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir. 2002;18:5818–5822.
  • Lafuma A, Quéré D. Superhydrophobic states. Nat Mater. 2003;2:457–460.
  • Mouterde T, Raux PS, Clanet C, et al. Superhydrophobic frictions. Proc Natl Acad Sci USA. 2019;116:8220–8223.
  • Ensikat HJ, Ditsche-Kuru P, Neinhuis C, et al. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf Beilstein. J Nanotechnol. 2011;2:152–161.
  • Hensel R, Neinhuis C, Werner C. The springtail cuticle as a blueprint for omniphobic surfaces. Chem Soc Rev. 2016;45:323–341.
  • Liu TL, C-J K. Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids. Science. 2014;346:1096–1100.
  • Verho T, Bower C, Andrew P, et al. Mechanically durable superhydrophobic surfaces. Adv Mater. 2011;23:673–678.
  • Wang D, Sun Q, Hokkanen MJ, et al. Design of robust superhydrophobic surfaces. Nature. 2020;582:55–59.
  • Peng C, Chen Z, Tiwari MK. All-Organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance. Nat Mater. 2018;17:355–360.
  • Liu M, Wang S, Wei Z, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater. 2009;21:665–669.
  • Yong J, Chen F, Fang Y, et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles. ACS Appl Mater Interfaces. 2017;9:39863–39871.
  • Yong J, Chen F, Li M, et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces. J Mater Chem A Mater Energy Sustain. 2017;5:25249–25257.
  • Ma W, Xu H, Takahara A, et al. Substrate-Independent underwater superoleophobic surfaces inspired by fish-skin and mussel-adhesives. Adv Mater Interfaces. 2014;1:1300092.
  • Zhang P, Zhao C, Zhao T, et al. Recent advances in bioinspired gel surfaces with superwettability and special adhesion. Adv Sci. 2019;6:1900996.
  • Gao H, Zhao Z, Cai Y, et al. Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nat Commun. 2017;8:15911.
  • Tian X, Jokinen V, Li J, et al. Unusual dual superlyophobic surfaces in oil-water systems: the design principles. Adv Mater. 2016;28:10652–10658.
  • Cai Y, Lu Q, Guo X, et al. Salt-Tolerant superoleophobicity on alginate gel surfaces inspired by seaweed (Saccharina japonica). Adv Mater. 2015;27:4162–4168.
  • David Smith J, Dhiman R, Anand S, et al. Droplet mobility on lubricant-impregnated surfaces. Soft Matter. 2013;9:1772–1780.
  • Keiser A, Keiser L, Clanet C, et al. Drop friction on liquid-infused materials. Soft Matter. 2017;13:6981–6987.
  • Daniel D, Mankin MN, Belisle RA, et al. Lubricant-Infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures. Appl Phys Lett. 2013;102:231603.
  • Peppou-Chapman S, Neto C. Mapping depletion of lubricant films on antibiofouling wrinkled slippery surfaces. ACS Appl Mater Interfaces. 2018;10:33669–33677.
  • Kreder MJ, Daniel D, Tetreault A, et al. Film dynamics and lubricant depletion by droplets moving on lubricated surfaces. Phys Rev X. 2018;8:031053.
  • Howell C, Grinthal A, Sunny S, et al. Designing liquid-infused surfaces for medical applications: a review. Adv Mater. 2018;30:1802724.
  • Nishioka S, Tenjimbayashi M, Manabe K, et al. Facile design of plant-oil-infused fine surface asperity for transparent blood-repelling endoscope lens. RSC Adv. 2016;6:47579–47587.
  • Leslie DC, Waterhouse A, Berthet J, et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat Biotechnol. 2014;32:1134–1140.
  • Wang J, Wang L, Sun N, et al. Viscoelastic solid-repellent coatings for extreme water saving and global sanitation. Nat Sustain. 2019;2:1097–1105.
  • Manabe K, Nakano M, Hibi Y, et al. Self‐supplying liquidity oil‐adsorbed slippery smooth surface for both liquid and solid repellency. Adv Mater Interfaces. 2020;7:1901818.
  • Wang L, McCarthy TJ. Covalently attached liquids: instant omniphobic surfaces with unprecedented repellency. Angew Chem Int Ed Engl. 2016;55:244–248.
  • Cheng DF, Urata C, Yagihashi M, et al. A statically oleophilic but dynamically oleophobic smooth nonperfluorinated surface. Angew Chem Int Ed Engl. 2012;51:2956–2959.
  • Fadeev AY, McCarthy TJ. Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir. 1999;15:3759–3766.
  • Lin Y, Wang L, Krumpfer JW, et al. Hydrophobization of inorganic oxide surfaces using dimethylsilanediol. Langmuir. 2013;29:1329–1332.
  • Gao L, McCarthy TJ. Contact angle hysteresis explained. Langmuir. 2006;22(14):6234–6237.
  • Urata C, Cheng DF, Masheder B, et al. Smooth, transparent and nonperfluorinated surfaces exhibiting unusual contact angle behavior toward organic liquids. RSC Adv. 2012;2:9805–9808.
  • Wooh S, Vollmer D. Silicone brushes: omniphobic surfaces with low sliding angles. Angew Chem Int Ed Engl. 2016;55:6822–6824.
  • Wu Q, Yang C, Su C, et al. Slippery liquid-attached surface for robust biofouling resistance. ACS Biomater Sci Eng. 2020;6:358–366.
  • Aussillous P, Quéré D. Properties of liquid marbles. Pro R Soc A: Math Phys Eng Sci. 2006;462:973–999.
  • Quéré D. Leidenfrost dynamics. Annu Rev Fluid Mech. 2013;45:197–215.
  • Mogilevskiy E. Levitation of a nonboiling droplet over hot liquid bath. Phys Fluids. 2020;32:012114.
  • Maquet L, Brandenbourger M, Sobac B, et al. Leidenfrost drops: effect of gravity. Epl. 2015;110:24001.
  • Couder Y, Protière S, Fort E, et al. Dynamical phenomena: walking and orbiting droplets. Nature. 2005;437:208.
  • Gauthier A, Bird JC, Clanet C, et al. Aerodynamic Leidenfrost effect. Phys Rev Fluids. 2016;1:084002.
  • Lhuissier H, Tagawa Y, Tran T, et al. Levitation of a drop over a moving surface. J Fluid Mech. 2013;733. DOI:10.1017/jfm.2013.470.
  • Dewandre A, Rivero-Rodriguez J, Vitry Y, et al. Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle. Sci Rep. 2020;10:21616.
  • Yang Q-J, Mao Q, Cao W. Numerical simulation of the Marangoni flow on mass transfer from single droplet with different Reynolds numbers. Colloids Surf a Physicochem Eng Asp. 2022;639:128385.
  • Jadidbonab H, Malgarinos I, Karathanassis I, et al. We-T classification of diesel fuel droplet impact regimes. Pro R Soc A: Math Phys Eng Sci. 2018;474:20170759.
  • Richard D, Clanet C, Quéré D. Contact time of a bouncing drop. Nature. 2002;417:811.
  • Liu Y, Moevius L, Xu X, et al. Pancake bouncing on superhydrophobic surfaces. Nat Phys. 2014;10:515–519.
  • Cogswell FN. Measuring the extensional rheology of polymer melts. T Soc Rheol. 1972;16:383–403.
  • Reynolds C, Thompson R, McLeish T, et al. Pressure and shear rate dependence of the viscosity and stress relaxation of polymer melts. J Rheol. 2018;62:631–642.
  • Chen G, Gao Y, Li M, et al. Rapid and flexible actuation of droplets via a low-adhesive and deformable magnetically functionalized membrane. J Mater Sci. 2018;53:13253–13263.
  • Wang W, Timonen JVI, Carlson A, et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature. 2018;559:77–82.
  • Zhang Y, Huang Z, Cai Z, et al. Magnetic-Actuated “capillary container” for versatile three-dimensional fluid interface manipulation. Sci Adv. 2021;7:eabi7498.
  • Demirörs AF, Aykut S, Ganzeboom S, et al. Programmable droplet manipulation and wetting with soft magnetic carpets. Proc Natl Acad Sci USA. 2021;118:e2111291118.
  • Nasirimarekani V, Benito-Lopez F, Basabe-Desmonts L. Tunable superparamagnetic ring (tSPRing) for droplet manipulation. Adv Funct Mater. 2021;31:2100178.
  • Xue Y, Wang H, Zhao Y, et al. Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater. 2010;22:4814–4818.
  • Tian D, Zhang N, Zheng X, et al. Fast responsive and controllable liquid transport on a magnetic fluid/nanoarray composite interface. ACS Nano. 2016;10:6220–6226.
  • Ma Z, Wang Q, Ai J, et al. Ferromagnetic liquid droplet on a superhydrophobic surface for the transduction of mechanical energy to electricity based on electromagnetic induction. ACS Nano. 2021;15:12151–12160.
  • Dorvee JR, Derfus AM, Bhatia SN, et al. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones. Nat Mater. 2004;3:896–899.
  • Timonen JVI, Latikka M, Leibler L, et al. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science. 2013;341:253–257.
  • Li A, Li H, Li Z, et al. Programmable droplet manipulation by a magnetic-actuated robot. Sci Adv. 2020;6:eaay5808.
  • Diguet A, Guillermic R-M, Magome N, et al. Photomanipulation of a droplet by the chromocapillary effect. Angew Chem Int Ed Engl. 2009;48:9281–9284.
  • Verneuil E, Cordero M, Gallaire F, et al. Laser-Induced force on a microfluidic drop: origin and magnitude. Langmuir. 2009;25:5127–5134.
  • Izri Z, van der Linden MN, Michelin S, et al. Self-Propulsion of pure water droplets by spontaneous Marangoni-stress-driven motion. Phys Rev Lett. 2014;113:248302.
  • Ichikawa M, Takabatake F, Miura K, et al. Controlling negative and positive photothermal migration of centimeter-sized droplets. Phys Rev e Stat Nonlin Soft Matter Phys. 2013;88:012403.
  • Ichimura K, Oh SK, Nakagawa M. Light-Driven motion of liquids on a photoresponsive surface. Science. 2000;288:1624–1626.
  • J-A L, Liu Y, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature. 2016;537:179–184.
  • Sun L, Bian F, Wang Y, et al. Bioinspired programmable wettability arrays for droplets manipulation. Proc Natl Acad Sci USA. 2020;117:4527–4532.
  • Li W, Tang X, Wang L. Photopyroelectric microfluidics. Sci Adv. 2020;6:eabc1693.
  • Watanabe A, Hasegawa K, Abe Y. Contactless fluid manipulation in air: droplet coalescence and active mixing by acoustic levitation. Sci Rep. 2018;8:10221.
  • Hasegawa K, Watanabe A, Abe Y. Acoustic manipulation of droplets under reduced gravity. Sci Rep. 2019;9:16603.
  • Wang Z, Zhe J. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip. 2011;11:1280–1285.
  • Rezk AR, Ahmed H, Ramesan S, et al. High frequency sonoprocessing: a new field of cavitation-free acoustic materials synthesis, processing, and manipulation. Adv Sci. 2020;8:2001983.
  • Mark D, Haeberle S, Roth G, et al. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev. 2010;39:1153–1182.
  • Sáenz PJ, Pucci G, Turton SE, et al. Emergent order in hydrodynamic spin lattices. Nature. 2021;596:58–62.
  • Sáenz PJ, Cristea-Platon T, Bush JWM. Statistical projection effects in a hydrodynamic pilot-wave system. Nat Phys. 2017;14:315–319.
  • Chakrabarti A, Choi GPT, Mahadevan L. Self-Excited motions of volatile drops on swellable sheets. Phys Rev Lett. 2020;124:258002.
  • Sumino Y, Magome N, Hamada T, et al. Self-Running droplet: emergence of regular motion from nonequilibrium noise. Phys Rev Lett. 2005;94:068301.
  • Suga M, Suda S, Ichikawa M, et al. Self-Propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions. Phys Rev E. 2018;97:062703.
  • Li J, Ha NS, Liu TL, et al. Ionic-Surfactant-Mediated electro-dewetting for digital microfluidics. Nature. 2019;572:507–510.
  • Nikapitiya NYJB, Nahar MM, Moon H. Accurate, consistent, and fast droplet splitting and dispensing in electrowetting on dielectric digital microfluidics. Micro Nano Syst Lett. 2017;5:1–10.
  • T’Mannetje D, Ghosh S, Lagraauw R, et al. Trapping of drops by wetting defects. Nat Commun. 2014;5:3559.
  • Dai H, Gao C, Sun J, et al. Controllable high-speed electrostatic manipulation of water droplets on a superhydrophobic surface. Adv Mater. 2019;31:e1905449.
  • Sun Q, Wang D, Li Y, et al. Surface charge printing for programmed droplet transport. Nat Mater. 2019;18:936–941.
  • Tang Q, Liu X, Cui X, et al. Contactless discharge-driven droplet motion on a nonslippery polymer surface. Langmuir. 2021;37:14697–14702.
  • Li N, Wu L, Yu C, et al. Ballistic jumping drops on superhydrophobic surfaces via electrostatic manipulation. Adv Mater. 2018;30:1703838.
  • Damak M, Hyder MN, Varanasi KK. Enhancing droplet deposition through in-situ precipitation. Nat Commun. 2016;7:12560.
  • Li X, Bista P, Stetten AZ, et al. Spontaneous charging affects the motion of sliding drops. Nat Phys. 2022;18:713–719.
  • Tang X, Li W, Wang L. Furcated droplet motility on crystalline surfaces. Nat Nanotechnol. 2021;16:1106–1112.
  • Prakash M, Quéré D, Bush JWM. Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science. 2008;320:931–934.
  • Son J, Bae GY, Lee S, et al. Cactus-Spine-Inspired sweat-collecting patch for fast and continuous monitoring of sweat. Adv Mater. 2021;33:e2102740.
  • Chen H, Ran T, Gan Y, et al. Ultrafast water harvesting and transport in hierarchical microchannels. Nat Mater. 2018;17:935–942.
  • Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk. Nature. 2010;463:640–643.
  • Parker AR, Lawrence CR. Water capture by a desert beetle. Nature. 2001;414:33–34.
  • Gao X, Jiang L. Biophysics: water-repellent legs of water striders. Nature. 2004;432:36.
  • Wang Q, Yao X, Liu H, et al. Self-Removal of condensed water on the legs of water striders. Proc Natl Acad Sci USA. 2015;112:9247–9252.
  • Shi F, Niu J, Liu J, et al. Towards understanding why a superhydrophobic coating is needed by water striders. Adv Mater. 2007;19:2257–2261.
  • Wisdom KM, Watson JA, Qu X, et al. Self-Cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proc Natl Acad Sci USA. 2013;110:7992–7997.
  • Mouterde T, Lehoucq G, Xavier S, et al. Antifogging abilities of model nanotextures. Nat Mater. 2017;16:658–663.
  • Lo CM, Wang HB, Dembo M, et al. Cell movement is guided by the rigidity of the substrate. Biophys J. 2000;79:144–152.
  • Tamim SI, Bostwick JB. Model of spontaneous droplet transport on a soft viscoelastic substrate with nonuniform thickness. Phys Rev E. 2021;104:034611.
  • Style RW, Che Y, Park SJ, et al. Patterning droplets with durotaxis. Proc Natl Acad Sci USA. 2013;110:12541–12544.
  • Pérez-González C, Alert R, Blanch-Mercader C, et al. Active wetting of epithelial tissues. Nat Phys. 2019;15:79–88.
  • Bjelobrk N, Girard H-L, Bengaluru Subramanyam S, et al. Thermocapillary motion on lubricant-impregnated surfaces. Phys Rev Fluids. 2016;1:063902.
  • Okada K, Miura Y, Chiya T, et al. Thermo-Responsive wettability via surface roughness change on polymer-coated titanate nanorod brushes toward fast and multi-directional droplet transport. RSC Adv. 2020;10:28032–28036.
  • Hou K, Guan D, Li H, et al. Programmable light-driven swimming actuators via wavelength signal switching. Sci Adv. 2021;7:eabh3051.
  • Bouillant A, Lafoux B, Clanet C, et al. Thermophobic Leidenfrost. Soft Matter. 2021;17:8805–8809.
  • Chaudhury MK, Whitesides GM. How to make water run uphill. Science. 1992;256:1539–1541.
  • Cira NJ, Benusiglio A, Prakash M. Vapour-Mediated sensing and motility in two-component droplets. Nature. 2015;519:446–450.
  • Leon VJ, Varanasi KK. Self-Propulsion of boiling droplets on thin heated oil films. Phys Rev Lett. 2021;127:074502.
  • Huang Y, Stogin BB, Sun N, et al. A switchable cross-species liquid repellent surface. Adv Mater. 2017;29:1604641.
  • Guo P, Wang Z, Heng L, et al. Magnetocontrollable droplet and bubble manipulation on a stable amphibious slippery gel surface. Adv Funct Mater. 2019;29:1808717.
  • Zhu Y, Antao DS, Xiao R, et al. Real-Time manipulation with magnetically tunable structures. Adv Mater. 2014;26:6442–6446.
  • Hu D, Lai H, Cheng Z, et al. A magnetic‐driven switchable adhesive superhydrophobic surface for in situ sliding control of superparamagnetic microdroplets. Adv Mater Interfaces. 2022;9:2101660.
  • Fan Y, Li S, Wei D, et al. Bioinspired superhydrophobic cilia for droplets transportation and microchemical reaction. Adv Mater Interfaces. 2021;8:2101408.
  • Wang J, Zhu Z, Liu P, et al. Magneto-Responsive shutter for on-demand droplet manipulation. Adv Sci. 2021;8:e2103182.
  • Papadopoulos P, Mammen L, Deng X, et al. How superhydrophobicity breaks down. Proc Natl Acad Sci USA. 2013;110:3254–3258.
  • Li Y, Quéré D, Lv C, et al. Monostable superrepellent materials. Proc Natl Acad Sci USA. 2017;114:3387–3392.
  • Han X, Li W, Zhao H, et al. Slippery damper of an overlay for arresting and manipulating droplets on nonwetting surfaces. Nat Commun. 2021;12:3154.
  • Zheng Y, Gao X, Jiang L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter. 2007;3:178–182.
  • Li P, Zhang B, Zhao H, et al. Unidirectional droplet transport on the biofabricated butterfly wing. Langmuir. 2018;34:12482–12487.
  • Li Q, Li L, Shi K, et al. Reversible structure engineering of bioinspired anisotropic surface for droplet recognition and transportation. Adv Sci. 2020;7:2001650.
  • Malvadkar NA, Hancock MJ, Sekeroglu K, et al. An engineered anisotropic nanofilm with unidirectional wetting properties. Nat Mater. 2010;9:1023–1028.
  • Li C, Yu C, Zhou S, et al. Liquid harvesting and transport on multiscaled curvatures. Proc Natl Acad Sci USA. 2020;117:23436–23442.
  • Wang J, Yi S, Yang Z, et al. Laser direct structuring of bioinspired spine with backward microbarbs and hierarchical microchannels for ultrafast water transport and efficient fog harvesting. ACS Appl Mater Interfaces. 2020;12:21080–21087.
  • Tian Y, Zhu P, Tang X, et al. Large-Scale water collection of bioinspired cavity-microfibers. Nat Commun. 2017;8:1080.
  • Noblin X, Yang S, Dumais J. Surface tension propulsion of fungal spores. J Exp Biol. 2009;212:2835–2843.
  • Liu F, Chavez RL, Patek SN, et al. Asymmetric drop coalescence launches fungal ballistospores with directionality. J R Soc Interface. 2017;14:20170083.
  • Li J, Hou Y, Liu Y, et al. Directional transport of high-temperature Janus droplets mediated by structural topography. Nat Phys. 2016;12:606–612.
  • Mukherjee R, Gruszewski HA, Bilyeu LT, et al. Synergistic dispersal of plant pathogen spores by jumping-droplet condensation and wind. Proc Natl Acad Sci USA. 2021;118:e2106938118.
  • Tang X, Zhu P, Tian Y, et al. Mechano-Regulated surface for manipulating liquid droplets. Nat Commun. 2017;8:14831.
  • Ma L, Wang J, He J, et al. Biotemplated fabrication of a multifunctional superwettable shape memory film for wearable sensing electronics and smart liquid droplet manipulation. ACS Appl Mater Interfaces. 2021;13:31285–31297.
  • Yang Y, Li X, Zheng X, et al. 3D-Printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv Mater. 2018;30:1704912.
  • Wang Z, Song S, Yang J, et al. Controllable Janus porous membrane with liquids manipulation for diverse intelligent energy-free applications. J Memb Sci. 2020;601:117954.
  • Tian X, Jin H, Sainio J, et al. Droplet and fluid gating by biomimetic Janus membranes. Adv Funct Mater. 2014;24:6023–6028.
  • Ding Y, Tu K, Burgert I, et al. Janus wood membranes for autonomous water transport and fog collection. J Mater Chem A Mater Energy Sustain. 2020;8:22001–22008.
  • Zhou H, Wang H, Lin T, et al. A novel Janus fabric with stable amphibious directional oil transport function. Chem Eng J. 2022;427:131936.
  • Zhang H, Liu Y, Zhang Z, et al. A superhydrophobic surface patterned with hydrophilic channels for directional sliding control and manipulation of droplets. Surf Coat Technol. 2021;409:126836.
  • Manna U, Lynn DM. Fabrication of liquid-infused surfaces using reactive polymer multilayers: principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces. Adv Mater. 2015;27:3007–3012.
  • Tenjimbayashi M, Higashi M, Yamazaki T, et al. Droplet motion control on dynamically hydrophobic patterned surfaces as multifunctional liquid manipulators. ACS Appl Mater Interfaces. 2017;9:10371–10377.
  • Linke H, Alemán BJ, Melling LD, et al. Self-Propelled Leidenfrost droplets. Phys Rev Lett. 2006;96:154502.
  • Lagubeau G, Le Merrer M, Clanet C, et al. Leidenfrost on a ratchet. Nat Phys. 2011;7:395–398.
  • Mertaniemi H, Forchheimer R, Ikkala O, et al. Rebounding droplet-droplet collisions on superhydrophobic surfaces: from the phenomenon to droplet logic. Adv Mater. 2012;24:5738–5743.
  • Yang X, Zhuang K, Lu Y, et al. Creation of topological ultraslippery surfaces for droplet motion control. ACS Nano. 2021;15:2589–2599.
  • Dong Z, Vuckovac M, Cui W, et al. 3D printing of superhydrophobic objects with bulk nanostructure. Adv Mater. 2021;33:e2106068.
  • Hayase G, Yoshino D. CNC-Milled superhydrophobic macroporous monoliths for 3D cell culture. ACS Appl Bio Mater. 2020;3:4747–4750.
  • Graeber G, Martin Kieliger OB, Schutzius TM, et al. 3D-Printed surface architecture enhancing superhydrophobicity and viscous droplet repellency. ACS Appl Mater Interfaces. 2018;10:43275–43281.
  • Dai X, Sun N, Nielsen SO, et al. Hydrophilic directional slippery rough surfaces for water harvesting. Sci Adv. 2018;4:eaaq0919.
  • Ding Y, Jia L, Peng Q, et al. Critical sliding angle of water droplet on parallel hydrophobic grooved surface. Colloids Surf A Physicochem Eng Asp. 2020;585:124083.
  • Zhang P, Liu H, Meng J, et al. Grooved organogel surfaces towards anisotropic sliding of water droplets. Adv Mater. 2014;26:3131–3135.
  • Manabe K, Matsubayashi T, Tenjimbayashi M, et al. Controllable broadband optical transparency and wettability switching of temperature-activated solid/liquid-infused nanofibrous membranes. ACS Nano. 2016;10:9387–9396.
  • Chen C, Huang Z, Jiao Y, et al. In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage. ACS Nano. 2019;13:5742–5752.
  • Han K, Wang Z, Heng L, et al. Photothermal slippery surfaces towards spatial droplet manipulation. J Mater Chem A Mater Energy Sustain. 2021;9:16974–16981.
  • Chen C, Huang Z, Zhu S, et al. In situ electric-induced switchable transparency and wettability on laser-ablated bioinspired paraffin-impregnated slippery surfaces. Adv Sci. 2021;8:e2100701.
  • Chen H, Zhang P, Zhang L, et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature. 2016;532:85–89.
  • Li C, Dai H, Gao C, et al. Bioinspired inner microstructured tube controlled capillary rise. Proc Natl Acad Sci USA. 2019;116:12704–12709.
  • Chu K-H, Xiao R, Wang EN. Uni-Directional liquid spreading on asymmetric nanostructured surfaces. Nat Mater. 2010;9:413–417.
  • Comanns P, Buchberger G, Buchsbaum A, et al. Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic “liquid diode. J R Soc Interface. 2015;12:20150415.
  • Kennedy RJ. Directional water-shedding properties of feathers. Nature. 1970;227:736–737.
  • Choi W, Tuteja A, Chhatre S, et al. Fabrics with tunable oleophobicity. Adv Mater. 2009;21:2190–2195.
  • Luan K, He M, Xu B, et al. Spontaneous directional self‐cleaning on the feathers of the aquatic bird anser cygnoides domesticus induced by a transient superhydrophilicity. Adv Funct Mater. 2021;31:2010634.
  • Feng S, Zhu P, Zheng H, et al. Three-Dimensional capillary ratchet-induced liquid directional steering. Science. 2021;373:1344–1348.
  • Tenjimbayashi M, Kawamura K, Shiratori S, et al. Continuous directional water transport on hydrophobic slippery ventral skin of Lampropeltis pyromelana. Adv Mater Interfaces. 2020;7:2000984.
  • Zhu M, Li Y, Chen G, et al. Tree-Inspired design for high-efficiency water extraction. Adv Mater. 2017;29:1704107.
  • Rico-Guevara A, Rubega MA. The hummingbird tongue is a fluid trap, not a capillary tube. Proc Natl Acad Sci USA. 2011;108:9356–9360.
  • Samy RA, George D, Sen AK. Bio-Inspired liquid transport via elastocapillary interaction of a thin membrane with a liquid meniscus. Soft Matter. 2017;13:6858–6869.
  • Kim W, Peaudecerf F, Baldwin M, et al. The hummingbird’s tongue: a self-assembling capillary syphon. Proc Biol Sci. 2012;279:4990–4996.
  • Foresti D, Kroll KT, Amissah R, et al. Acoustophoretic printing. Sci Adv. 2018;4:eaat1659.
  • Li L, Li W, Sun Q, et al. Dual surface architectonics for directed self-assembly of ultrahigh-resolution electronics. Small. 2021;17:e2101754.
  • Popova AA, Schillo SM, Demir K, et al. Droplet-Array (DA) sandwich chip: a versatile platform for high-throughput cell screening based on superhydrophobic-superhydrophilic micropatterning. Adv Mater. 2015;27:5217–5222.
  • Xu Y, Rather AM, Yao Y, et al. Liquid crystal-based open surface microfluidics manipulate liquid mobility and chemical composition on demand. Sci Adv. 2021;7:eabi7607.
  • Li H, Shkolyar E, Wang J, et al. SLIPS-LAB-A bioinspired bioanalysis system for metabolic evaluation of urinary stone disease. Sci Adv. 2020;6:eaba8535.
  • Han H, Lee JS, Kim H, et al. Single-Droplet multiplex bioassay on a robust and stretchable extreme wetting substrate through vacuum-based droplet manipulation. ACS Nano. 2018;12:932–941.
  • Zhang Y, Li J, Xiang L, et al. A biocompatible vibration-actuated omni-droplets rectifier with large volume range fabricated by femtosecond laser. Adv Mater. 2022;34:e2108567.
  • Xu W, Zheng H, Liu Y, et al. A droplet-based electricity generator with high instantaneous power density. Nature. 2020;578:392–396.
  • Liu C, Sun J, Zhuang Y, et al. Self-Propelled droplet-based electricity generation. Nanoscale. 2018;10:23164–23169.
  • Miljkovic N, Enright R, Nam Y, et al. Jumping-Droplet-Enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 2013;13:179–187.
  • Boreyko JB, Chen C-H. Self-Propelled dropwise condensate on superhydrophobic surfaces. Phys Rev Lett. 2009;103:184501.
  • Zhang Y, Zhang M, Zhu J, et al. Elevating Leidenfrost temperature by orderly droplet stream impingement boiling. Int J Heat Mass Transf. 2022;194:122976.
  • Shirota M, van Limbeek MAJ, Sun C, et al. Dynamic Leidenfrost effect: relevant time and length scales. Phys Rev Lett. 2016;116:064501.
  • Jiang M, Wang Y, Liu F, et al. Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling. Nature. 2022;601:568–572.
  • Bourrianne P, Lv C, Quéré D. The cold Leidenfrost regime. Sci Adv. 2019;5:eaaw0304.
  • Medici M-G, Mongruel A, Royon L, et al. Edge effects on water droplet condensation. Phys Rev e Stat Nonlin Soft Matter Phys. 2014;90:062403.
  • Bai H, Wang L, Ju J, et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Adv Mater. 2014;26:5025–5030.
  • Luo H, Lu Y, Yin S, et al. Robust platform for water harvesting and directional transport. J Mater Chem A Mater Energy Sustain. 2018;6:5635–5643.
  • Wu L, Dong Z, Cai Z, et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat Commun. 2020;11:521.
  • Geyer F, D’Acunzi M, Sharifi-Aghili A, et al. When and how self-cleaning of superhydrophobic surfaces works. Sci Adv. 2020;6:eaaw9727.
  • Zhang M, Wang L, Feng S, et al. A strategy of antifogging: air-trapped hollow microsphere nanocomposites. Chem Mater. 2017;29:2899–2905.
  • Luo Y-Q, Song F, Xu C, et al. Bioinspired fabrication of asymmetric wood materials for directional liquid manipulation and transport. Chem Eng J. 2020;383:123168.
  • Nørgaard AW, Hansen JS, Sørli JB, et al. Pulmonary toxicity of perfluorinated silane-based nanofilm spray products: solvent dependency. Toxicol Sci. 2014;137:179–188.
  • Nakanishi T. Functional organic liquids. Germany: John Wiley & Sons, Incorporated; 2019.
  • Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev. 2018;47:4073–4111.
  • Liu X, Kent N, Ceballos A, et al. Reconfigurable ferromagnetic liquid droplets. Science. 2019;365:264–267.
  • Li S, Batra R, Brown D, et al. Particle robotics based on statistical mechanics of loosely coupled components. Nature. 2019;567:361–365.
  • Haeger A, Wolf K, Zegers MM, et al. Collective cell migration: guidance principles and hierarchies. Trends Cell Biol. 2015;25:556–566.