1,199
Views
4
CrossRef citations to date
0
Altmetric
Focus on Advancements of Functional Materials with Nanoarchitectonics as Post-Nanotechnology Concept in Materials Science

Deep-UV laser direct writing of photoluminescent ZnO submicron patterns: an example of nanoarchitectonics concept

, , ORCID Icon, & ORCID Icon
Pages 535-546 | Received 11 Jul 2022, Accepted 13 Aug 2022, Published online: 07 Oct 2022

References

  • Yeh CC, Zan HW, Soppera O. Solution-Based micro- and nanoscale metal oxide structures formed by direct patterning for electro-optical applications. Adv Mater. 2018;30(50):1800923.
  • Yu X, Marks TJ, Facchetti A. Metal oxides for optoelectronic applications. Nature Mater. 2016;15(4):383–396.
  • Ariga K, Nishikawa M, Mori T, et al. Self-Assembly as a key player for materials nanoarchitectonics. Sci Technol Adv Mater. 2019;20(1):51–95.
  • Ariga K. Nanoarchitectonics: what’s coming next after nanotechnology? Nanoscale Horiz. 2021;6(5):364–378.
  • Kagan CR, Lifshitz E, Sargent EH, et al. Building devices from colloidal quantum dots. Science. 2016;353(6302):aac5523–aac5533.
  • Stoeva S, Klabunde KJ, Sorensen CM, et al. Gram-Scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc. 2002;124(10):2305–2311.
  • Jana NR, Peng X. Single-Phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J Am Chem Soc. 2003;125(47):14280–14281.
  • Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = Sulfur, Selenium, Tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115(19):8706–8715.
  • Peng X, Wickham J, Alivisatos AP. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J Am Chem Soc. 1998;120(21):5343–5344.
  • Shim M, Guyot-Sionnest P. N-Type colloidal semiconductor nanocrystals. Nature. 2000;407(6807):981–983.
  • Yamauchi H, Ishikawa T, Kondo S. Surface characterization of ultramicro spherical particles of silica prepared by w/o microemulsion method. Colloids Surf. 1989;37:71–80.
  • Pileni MP. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater. 2003;2(3):145–150.
  • Kovalenko MV, Scheele M, Talapin DV. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science. 2009;324(5933):1417–1420.
  • Fafarman AT, Koh WK, Diroll BT, et al. Thiocyanate-Capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids J. Am Chem Soc. 2011;133(39):15753–15761.
  • Coropceanu I, Janke EM, Portner J, et al. Self-Assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science. 2022;375(6587):1422–1426.
  • Wang Y, Fedin I, Zhang H, et al. Direct optical lithography of functional inorganic nanomaterials. Science. 2017;357(6349):385–388.
  • Pan JA, Ondry JC, Talapin DV. Direct optical lithography of CsPbX3 nanocrystals via photoinduced ligand cleavage with postpatterning chemical modification and electronic coupling. Nano Lett. 2021;21(18):7609–7616.
  • Grasset F, Starukh G, Spanhel L, et al. From ZnO colloid to nanocrystalline colored ZnxTiyOw-zNz spinel films. Adv Mater. 2005;17(3):294–297.
  • van Dijken A, Meulenkamp EA, Vanmaekelbergh D, et al. The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission. J Lumin. 2000;87-89:454–456.
  • Grasset F, Molard Y, Cordier S, et al. When ‘metal atom clusters’ meet ZnO nanocrystals: novel ((n-C4H9)4N)2Mo6Br14@ZnO hybrid, Adv Mater. 2008;20(9):1710–1715.
  • Grasset F, Cordier S, Molard Y, et al. Design of new M@ZnO nanocolloids: synthesis and shaping. Int J Nanotechnol. 2008;5(6/7/8):708–721.
  • Truong TG, Dierre B, Grasset F, et al. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films, Sci Technol Adv Mater. 2016;17(1):443–453.
  • Lee D, Wolska-Pietkiewicz M, Badoni S, et al. Disclosing interfaces of ZnO nanocrystals using dynamic nuclear polarization: sol‐gel versus organometallic approach. Angew Chem Int Ed. 2019;58(48):17163–17168.
  • Xiong G, Pal U, Serrano JG. Correlations among size, defects, and photoluminescence in ZnO nanoparticles. J Appl Phys. 2007;101(2):024317.
  • Larkin PJ. Infrared and Raman spectroscopy: principles and spectral interpretation. 1st ed. Boston (MA): Elsevier; 2011.
  • Barboux-Doeuff S, Sanchez C. Synthesis and characterization of titanium oxide-based gels synthesized from acetate modified titanium butoxide precursors. Mat Res Soc Bull. 1994;29(1):1–13.
  • Hoffman MR, Martin ST, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95(1):69–96.
  • Schmitt M. ZnO nanoparticle induced photo-Kolbe reaction, fragment stabilization and effect on photopolymerization monitored by Raman-UV-Vis measurements. Macromol Chem Phys. 2012;213(18):1953–1962.
  • Stehlin F, Wieder F, Spangenberg A, et al. Room-Temperature preparation of metal-oxide nanostructures by DUV lithography from metal-oxo clusters. J Mater Chem C. 2014;2(2):277–285.
  • Yeh CC, Liu HC, Chuang MY, et al. Controllable formation of zinc oxide micro- and nanostructures via DUV direct patterning. Adv Mater Interf. 2016;3(19):1600373.
  • Scherrer P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgensrahlen [Determination of the size and internal structure of colloidal particles using X-rays]. Nachr Ges Wiss Goettingen, Math-Phys Kl. 1918;1918:98‑100.
  • Vorokh AS. Scherrer formula: estimation of error in determining small nanoparticle size. Nanosyst Phys Chem Math. 2018;9(3):364–369.
  • Tauc J, Scott TA. The optical properties of solids. Phys Today. 1967;20(10):105–107.
  • Spencer JA, Mock AL, Jacobs AG, et al. A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO CuO and Cs2O3. Appl Phys Rev. 2022;9(1):011315–011415
  • Djurišić AB, Leung YH. Optical properties of ZnO nanostructures. Small. 2006;2(8–9):944–961.
  • Lee JH, Ko KH, Park BO. Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. J Cryst Growth. 2003;247(1–2):119–125.
  • Gadallah AS, Nomenyo K, Couteau C, et al. Stimulated emission from ZnO thin films with high optical gain and low loss. Appl Phys Lett. 2013;102(17):171105.
  • Aad R, Couteau C, Blaize S, et al. Efficient pump photon recycling via gain-assisted waveguiding energy transfer. ACS Photonics. 2014;1(3):246–253. DOI:10.1021/ph4001179
  • Kwok WM, Djurišić AB, Leung YH, et al. Influence of annealing on stimulated emission in ZnO nanorods. Appl Phys Lett. 2006;89(18):183112.
  • Heo YW, Norton DP, Pearton SJ. Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy. J Appl Phys. 2005;98(7):073502.
  • Spanhel L. Colloidal ZnO nanostructures and functional coatings: a survey. J SoL-Gel Sci Technol. 2006;39(1):7–24.
  • Kahn ML, Cardinal T, Bousquet B, et al. Optical Properties of zinc oxide nanoparticles and nanorods synthesized using an organometallic method. Chemphyschem. 2006;7(11):2392–2397.
  • van Dijken A, Makkinje J, Meijerink A. The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles. J Lumin. 2001;92(4):323–328.