2,185
Views
32
CrossRef citations to date
0
Altmetric
Focus on Metal Atom Clusters and Superatoms: From Fundamentals to Functional Nanocomposites

A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6): inorganic 0D and 2D powders and films

ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 547-578 | Received 19 Jul 2022, Accepted 24 Aug 2022, Published online: 04 Oct 2022

References

  • Blumstein A. Etude des polymerisation en couches adsorbées. Bull Soc Chim Fr. 1961:899–905.
  • Gorsse S, Hutchinson C, Gouné M, et al. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6al-4V and high-entropy alloys. Sci Technol Adv Mater. 2017;18(1):584–610.
  • Fu S, Sun Z, Huang P, et al. Some basic aspects of polymer nanocomposites: a critical review. Nano Mater Sci. 2019;1:2–30.
  • Omanović-Mikličanin E, Badnjević A, Kazlagić A, et al. Nanocomposites: a brief review. Health Technol. 2020;10:51–59.
  • Liu R, Duaya J, Bok Lee S. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun. 2011;47:1384–1404.
  • Aono M, Ariga K. The way to nanoarchitectonics and the way of nanoarchitectonics. Adv Mater. 2016;28:989–992.
  • Ariga K, Nishikawa M, Mori T, et al. Self-Assembly as a key player for materials nanoarchitectonics. Sci Technol Adv Mater. 2019;20:51–95.
  • Ariga K, Fakhrullin R. Materials nanoarchitectonics from atom to living cell: a method for everything. Bull Chem Soc Jpn. 2022;95:774–795.
  • Hu W, Shi J, Lv W, et al. Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. Sci Technol Adv Mater. 2022;23(1):393–412.
  • Chen G, Singh SK, Takeyasu K, et al. Versatile nanoarchitectonics of Pt with morphology control of oxygen reduction reaction catalysts. Sci Technol Adv Mater. 2022;23(1):413–423.
  • Shen X, Song J, Sevencan C, et al. Bio-Interactive nanoarchitectonics with two-dimensional materials and environments. Sci Technol Adv Mater. 2022;23(1):199–224.
  • Park HJ, Shin DJ, Yu J. Categorization of quantum dots, clusters, nanoclusters, and nanodots. J Chem Educ. 2021;98:703–709.
  • Breitscheidel B, Zieder J, Schubert U. Metal complexes in inorganic matrixes. 7. Nanometer-sized, uniform metal particles in a silica matrix by sol-gel processing of metal complexes. Chem Mater. 1991;3(3):559–566.
  • Gacoin T, Chaput F, Boilot JP. Complexed metal clusters in organically modified oxide matrices. Chem Mater. 1993;5:1150–1156.
  • Shang L, Dong SJ, Nienhaus GU. Ultra-Small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today. 2011;6:401–418.
  • Sun HT, Sakka Y. Luminescent metal nanoclusters: controlled synthesis and functional applications. Sci Technol Adv Mater. 2014;15:14205.
  • Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev. 2017;117:8208–8271.
  • Fu F, Dedieu A, Wang W, et al. Stabilization of a new nanocomposite family by reduction of gold nanoclusters with electron-reservoir complexes. Chem Commun. 2019;55:10277–10280.
  • Su Y, Xue T, Liu Y, et al. Luminescent metal nanoclusters for biomedical applications. Nano Res. 2019;12:1251–1265.
  • Doud EA, Voevodin A, Hochuli TJ, et al. Superatoms in materials science. Nature Rev Mater. 2020;5(5):371–387.
  • Zhang Y, Feng N, Zhoua S, et al. Fluorescent nanocomposites based on gold nanoclusters for metal ion detection and white light emitting diodes. Nanoscale. 2021;13:4140–4150.
  • Hasegawa S, Tsukuda T. Exploring novel catalysis using polymer-stabilized metal clusters. BullChem Soc Jpn. 2021;94:1036–1044.
  • Kawawaki T, Shimizu N, Mitomi Y, et al. Supported, ∼1-nm-Sized platinum clusters: controlled preparation and enhanced catalytic activity. Bull Chem Soc Jpn. 2021;94:2853–2870.
  • Chen T, Lin H, Cao Y, et al. Interactions of Metal Nanoclusters with Light: fundamentals and applications. Adv Mater. 2021;2003932.
  • Seong H, Efremov V, Park G, et al. Atomically precise gold nanoclusters as model catalysts for identifying active sites for electroreduction of CO2. Angew Chem Int Ed. 2021;60:14563–14570.
  • Huang JH, Si Y, Dong XY, et al. Symmetry breaking of atomically precise fullerene-like metal nanoclusters. J Am Chem Soc. 2021;143(32):12439–12444.
  • Qian S, Wang Z, Zuo Z, et al. Engineering luminescent metal nanoclusters for sensing applications. Coord Chem Rev. 2022;451:214268.
  • Masuda S, Takano S, Yamazoe S, et al. Synthesis of active, robust and cationic Au25 cluster catalysts on double metal hydroxide by long-term oxidative aging of Au25(SR)18. Nanoscale. 2022;14:3031–3039.
  • Cordier S, Dorson F, Grasset F. Novel nanomaterials based on inorganic molybdenum octahedral clusters. J Clust Sci. 2009;20:9–21.
  • Aubert T, Grasset F, Mornet S, et al. Functional silica nanoparticles synthesized by water-in-oil microemulsion processes. J Colloid Interface Sci. 2010;341(2):201–208.
  • Cordier S, Molard Y, Brylev KA, et al. Advances in the engineering of near infrared emitting liquid crystals and copolymers, extended porous frameworks, theranostic tools and molecular junctions using tailored Re6 cluster building blocks. J Clust Sci. 2014;26(1):53–81.
  • Cordier S, Grasset F, Molard Y, et al. Inorganic molybdenum octahedral nanosized cluster units, versatile functional building block for nanoarchitectonics. J Inorg Organomet Polym Mater. 2015;25(2):189–204.
  • Molard Y. Clustomesogens: liquid crystalline hybrid nanomaterials containing functional metal nanoclusters. Acc Chem Res. 2016;49:1514–1523.
  • Nguyen TKN, Renaud A, Dierre B. Extended study on electrophoretic deposition process of inorganic octahedral metal clusters: advanced multifunctional transparent nanocomposite thin films. Bull Chem Soc Jpn. 2018;91:1763–1774.
  • Xie J, Wang L, Anderson JS. Heavy chalcogenide-transition metal clusters as coordination polymer nodes. Chem Sci. 2020;11:8350–8372.
  • Verger A, Brandhonneur N, Molard Y, et al. From molecules to nanovectors: current state of the art and applications of photosensitizers in photodynamic therapy. Int J Pharm. 2021;604:120763.
  • Cotton FA. Metal atom clusters in oxide systems. Inorg Chem. 1964;3:1217–1220.
  • Selby HD, Zheng Z. New directions of cluster chemistry – the story of the [Re6(μ3-Se)8]2+ clusters. Comments Inorg Chem. 2005;26(1–2):75–102.
  • Perrin A, Perrin C. The molybdenum and rhenium octahedral cluster chalcohalides in solid-state chemistry: from condensed to discrete cluster units. C R Chim. 2012;15(9):815–836.
  • Fedorov V. Metal clusters. As they were born in Siberia. J Clust Sci. 2015;26(1):3–15.
  • Lemoine P, Halet JF, Cordier S. Ligated transition metal clusters in solid-state chemistry: the legacy of Marcel Sergent. In: Halet J-F editor. Structure and bonding, (Series ed.: D. M. P. Mingos). Vol. 180. Switzerland: Springer International Publishing; 2019. p. 143–190.
  • Chevrel R, Sergent M, Prigent J. Sur de nouvelles phases sulfurées ternaires du molybdène. J Solid State Chem. 1071;3:515–519.
  • Zhou T, Lenoir B, Colin M, et al. Promising thermoelectric properties in AgxMo9Se11 compounds (3.4≤x≤3.9). Appl Phys Lett. 2011;98:162106.
  • Aurbach D, Lu Z, Schechter A. Prototype systems for rechargeable magnesium batteries. Nature. 2000;407:724–727.
  • Cario L, Vaju C, Corraze B, et al. Electric-field-induced resistive switching in a family of mott insulators: towards a new class of RRAM memories. Adv Mater. 2010;22:5193–5197.
  • Sokolov MN, Mihailov MA, Peresypkina EV. Highly luminescent complexes [Mo6X8(n-C3F7COO)6]2- (X = Br, I). Dalton Trans. 2011;40(24):6375–6377.
  • Kirakci K, Kubát P, Dušek M, et al. A highly luminescent hexanuclear molybdenum cluster - a promising candidate toward photoactive materials. Eur J Inorg Chem. 2012;8(19):3107–3111.
  • Costuas K, Garreau A, Bulou A, et al. Combined theoretical and time-resolved photoluminescence investigations of [Mo6Bri8Bra6]2− metal cluster units: evidence of dual emission. Phys Chem Chem Phys. 2015;17:28574–28585.
  • Dierre B, Costuas K, Dumait N, et al. Mo6 cluster-based compounds for energy conversion applications: comparative study of photoluminescence and cathodoluminescence. Sci Technol Adv Mater. 2017;18(1):458–466.
  • Evtushok DV, Melnikov AR, Vorotnikova NA, et al. A comparative study of optical properties and X-ray induced luminescence of octahedral molybdenum and tungsten cluster complexes. Dalton Trans. 2017;46(35):11738–11747.
  • Ivanov AA, Konovalov DI, Pozmogova TN, et al. Water-Soluble Re6-clusters with aromatic phosphine ligands – from synthesis to potential biomedical applications. Inorg Chem Front. 2019;6:882–892.
  • Marchuk MV, Vorotnikova NA, Vorotnikov YA, et al. Optical property trends in a family of {Mo6I8} aquahydroxo complexes. Dalton Trans. 2021;50:8794–8802.
  • McCarley RE, Hughes BG, Cotton FA, et al. The two-electron oxidation of metal atom cluster species of the type [M6X12]2+. Inorg Chem. 1965;4:1491–1492.
  • Espenson JH, McCarley RE. Oxidation of tantalum cluster ions. J Am Chem Soc. 1966;88:1063–1064.
  • Fan PD, Deglmann P, Ahlrichs R. Electron counts for face-bridged octahedral transition metal clusters. Chem Eur J. 2002;8:1059–1067.
  • Ramirez-Tagle R, Arratia-Perez R. Electronic structure and molecular properties of the [Mo6X8L6]2−; X = Cl, Br, I; L = F, Cl, Br, I clusters. Chem Phys Lett. 2008;460(4–6):438–441.
  • Gray TG. Divergent electronic structures of isoelectronic metalloclusters: tungsten(ii) halides and rhenium(iii) chalcogenide halides. Chem A Eur J. 2009;5(11):2581–2593.
  • Schott E, Zarate X, Alvarado-Soto L, et al. Effect over the electronic structure by changing the core metals from Mo to W in a family of [Mo6-nWnCl8F6]2- (n = 0–6) clusters. Polyhedron. 2013;65:98–101.
  • Saito N, Cordier S, Lemoine P, et al. Lattice and valence electronic structures of crystalline octahedral molybdenum halide clusters-based compounds, Cs2[Mo6X14] (X = Cl, Br, I), studied by density functional theory calculations. Inorg Chem. 2017;56:6234–6243.
  • Kirakci K, Demel J, Hynek J, et al. Phosphinate apical ligands – a route to water-stable octahedral molybdenum cluster complex. Inorg Chem. 2019;58:16546–16552.
  • Wilmet M, Lebastard C, Sciortino F, et al. Revisiting properties of edge-bridged bromide tantalum clusters in the solid-state, in solution and vice versa: an intertwined experimental and modelling approach. Dalton Trans. 2021;50:8002.
  • Novikova ED, Gassan ED, Ivanov AA, et al. Neutral Mo6Q8-clusters with terminal phosphane ligands – a route to water-soluble molecular units of Chevrel phases. New J Chem. 2022;46:2218–2223.
  • Long JR, McCarty LS, Holm RH. A solid-state route to molecular clusters: access to the solution chemistry of [Re6Q8]2+ (Q = S, Se) core-containing clusters via dimensional reduction. J Am Chem Soc. 1996;118:4603–4616.
  • Kirakci K, Cordier S, Perrin C. Synthesis and characterization of Cs2Mo6X14 (X = Br or I) hexamolybdenum cluster halides: efficient Mo6 cluster precursors for solution chemistry syntheses. Z Anorg Allg Chem. 2005;631:411–416.
  • Piedra-Garza LF. Kockerling M Straightforward synthesis and structure of a new starting material for niobium cluster phases: [Nb6Cli12(CH3OH)a4Cla2]·6CH3OH. Inorg Chem. 2006;45:8829–8831.
  • Shamshurin MV, Mikhaylov MA, Sukhikh T, et al. Octahedral {Ta6I12} Clusters. Inorg Chem. 2019;58:9028–9035.
  • Schröder F, Köckerling M. Improved access through ball milling: octahedral Ta6 cluster alkoxides with weakly coordinating cations and a rare example of an electron-poor Ta6 cluster Z. Anorg Allg Chem. 2021;647:1625.
  • Grasset F, Dorson F, Cordier S, et al. Water-In-Oil microemulsion preparation and characterization of Cs2[Mo6X14]@SiO2 phosphor nanoparticles based on transition metal clusters (X = Cl, Br, and I). Adv Mater. 2008;20:143–148.
  • Christiano SP, Wang J, Pinnavaia TJ. Intercalation of niobium and tantalum M6C112n+ cluster cations in Montmorillonite: a new route to pillared clays. Inorg Chem. 1985;24(8):1223–1227.
  • Christiano SP, Pinnavaia TJ. Intercalation in Montmorillonite of molybdenum cations containing the Mo6Cl8 cluster core. J Solid State Chem. 1986;64:232–239.
  • Newsham MD. Excited-state properties of transition-metal complexes in solution and the solid state [ Thesis, Ph.D. Dissertation]. Michigan State University; 1988.
  • Robinson LM, Lu H, Hupp JT, et al. Nature of the interaction and photophysical properties of [Mo6Cli8(SO3CF3)a6]2- and [Mo6Cli8Cla6]2- on silica gel. Chem Mater. 1995;7(1):43–49.
  • Jackson JA, Newsham MD, Worsham C, et al. Efficient singlet oxygen generation from polymers derivatized with hexanuclear molybdenum clusters. Chem Mater. 1996;8:558–564.
  • Robinson LM, Shriver DF. Synthesis and photophysical properties of polymer-bound hexanuclear molybdenum clusters. J Coord Chem. 1996;37:119–129.
  • Ghosh RN, Baker GL, Ruud C, et al. Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence. Appl Phys Lett. 1999;75(19):2885–2887.
  • Prokopuk N, Weinert CS, Siska DP, et al. Hydrogen-bonded hexamolybdenum clusters: formation of inorganic–organic networks. Angew Chem. 2000;39(18):3312–3315.
  • Roland BK, Carter C, Zheng Z. Routes to metallodendrimers of the [Re6(μ3-Se)8]2+ core-containing clusters. J Am Chem Soc. 2002;124:6234–6235.
  • Selby HD, Orto P, Zheng Z. Supramolecular arrays of the [Re6(μ3-Se)8]2+ core-containing clusters mediated by transition metal ions. Polyhedron. 2003;22:2999–3008.
  • Roland BK, Flora WH, Carducci MD, et al. An inorganic-organic hybrid composite featuring metal-chalcogenide clusters. J Cluster Sci. 2003;14:449–458.
  • Osborn DJ, Baker GL, Ghosh RN. Mo6Cl12-incorporated sol-gel for oxygen sensing applications. J SoL-Gel Sci Technol. 2005;36(1):5–10.
  • Roland BK, Flora WH, Selby HD, et al. Dendritic arrays of [Re6(μ3-Se)8]2+ core-containing clusters: exploratory synthesis and electrochemical studies. J Am Chem Soc. 2006;128(20):6620–6625.
  • Méry D, Plault L, Ornelas C, et al. From simple monopyridine clusters [Mo6Br13(Py-R)][n-Bu4N] and hexapyridine clusters [Mo6X8(Py-R)6][OSO2CF3]4 (X = Br or I) to cluster-cored organometallic stars, dendrons, and dendrimers. Inorg Chem. 2006;45(3):1156–1167.
  • Perruchas S, Flores S, Jousselme B, et al. [W6S8] octahedral tungsten clusters functionalized with thiophene derivatives: toward polymerizable building blocks. Inorg Chem. 2007;46(21):8976–8987.
  • Grasset F, Molard Y, Cordier S, et al. When “metal atom clusters” meet ZnO nanocrystals: a ((n-C4H9)4N)2Mo6Br14@ZnO hybrid. Adv Mater. 2008;20:1710–1715.
  • Grasset F, Roullier V, Marchi-Artzner V, et al. Synthesis and characterization of magnetic-fluorescent composite colloidal nanostructure. Proceeding 2nd IEEE International Nanoelectronics Conference; Shanghai, China. 2008. p. 1023–1027.
  • Grasset F, Dorson F, Molard Y, et al. One-Pot synthesis and characterizations of bifunctional phosphor–magnetic @SiO2 nanoparticles: controlled and structured association of Mo6 cluster units and γ-Fe2O3 nanocrystals. Chem Commun. 2008;39:4729.
  • Grasset F, Cordier S, Molard Y, et al. Design of new M@ZnO nanocolloids: synthesis and shaping. Int J Nanotechnol. 2008;5(6–8):708–721.
  • Aubert T, Ledneva AY, Grasset F, et al. Synthesis and characterization of A4[Re6Q8L6]@SiO2 red-emitting silica nanoparticles based on Re6 metal atom clusters (A = Cs or K, Q = S or Se, and L = OH or CN). Langmuir. 2010;26(23):18512–18518.
  • Dechézelles JF, Aubert T, Grasset F, et al. Fine tuning of emission through the engineering of colloidal crystals. Phys Chem Chem Phys. 2010;12(38):11993–11999.
  • Gao L, Peay MA, Gray TG. Encapsulation of phosphine-terminated rhenium(iii) chalcogenide clusters in silica nanoparticles. Chem Mater. 2010;22:6240–6245.
  • Dybtsev D, Serre C, Schmitz B. Influence of [Mo6Br8F6]2− cluster unit inclusion within the mesoporous solid MIL-101 on hydrogen storage performance. Langmuir. 2010;26(13):11283–11290.
  • Zhao Y, Lunt RR. Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors. Adv Energy Mater. 2013;3:1143–1148.
  • Renaud A, Grasset F, Dierre B, et al. Inorganic molybdenum clusters as light-harvester in all inorganic solar cells: a proof of concept. ChemistrySelect. 2016;1(10):2284–2289.
  • Feliz M, Puche M, Atienzar P, et al. In situ generation of active molybdenum octahedral clusters for photocatalytic hydrogen production from water. Chem Sus Chem. 2016;9:1963–1971.
  • Nguyen TKN, Dierre B, Grasset F, et al. Electrophoretic coating of octahedral molybdenum metal clusters for UV/NIR light screening. Coatings. 2017;7(8):114.
  • Nguyen TKN, Renaud A, Wilmet M, et al. New ultra-violet and near-infrared blocking filters for energy saving applications: fabrication of tantalum metal atom cluster-based nanocomposite thin films by electrophoretic deposition. J Mater Chem C. 2017;5:10477–10484.
  • Renaud A, Wilmet M, Truong TG, et al. Transparent tantalum cluster-based UV and IR blocking electrochromic devices. J Mater Chem C. 2017;5(32):8160–8168.
  • Chen W, Nguyen TKN, Wilmet M, et al. ITO@SiO2 and ITO@{M6Br12}@SiO2 (M = Nb, Ta) nanocomposite films for ultraviolet-near infrared shielding. Nanoscale Adv. 2019;1:3693–3698.
  • Renaud A, Nguyen TKN, Grasset F, et al. Preparation by electrophoretic deposition of molybdenum iodide cluster-based functional nanostructured photoelectrodes for solar cells. Electrochim Acta. 2019;317:737–745.
  • Lunt RR, Zhao Y. Transparent luminescent solar Concentrators for integrated Solar windows. United State patent US10439090B2. 2019
  • Khlifi S, Bigeon J, Amela-Cortes M, et al. Switchable two-dimensional waveguiding abilities of luminescent hybrid nanocomposites for active solar concentrators. ACS Appl Mater Interfaces. 2020;12(12):14400–14407.
  • Choi J, Kim K, Kim SJ. Quantum dot assisted luminescent hexarhenium cluster dye for a transparent luminescent solar concentrator. Sci Rep. 2021;11:13833.
  • Yang C, Sheng W, Moemeni M, et al. Ultraviolet and near-infrared dual-band selective-harvesting transparent luminescent solar concentrators. Adv Energy Mater. 2021;11:2003581.
  • Renaud A, Jouan PY, Dumait N, et al. Evidence of the ambipolar behavior of Mo6 cluster iodides in all-inorganic solar cells: a new example of nanoarchitectonic concept. ACS Appl Mater Interfaces. 2022;14(1):1347–1354.
  • Lebastard C, Wilmet M, Cordier S, et al. Controlling the deposition process of nanocomposites based on {Nb6-xTaxBri12} octahedral cluster building blocks (Xi = Cl, Br; 1 ≤ x ≤ 6) for UV-NIR blockers coating applications. Nanomaterials. 2022;12:2052.
  • Lebastard C, Wilmet W, Cordier S, et al. Nanoarchitectonics of glass coatings for near-infrared shielding: from solid-state cluster-based niobium chlorides to the shaping of nanocomposite films. ACS Appl Mater Interfaces. 2022;14:21116–21130.
  • Lebastard C, Wilmet M, Cordier S, et al. High performance {Nb5TaX12}@PVP (X = Cl, Br) cluster-based nanocomposites coatings for solar glazing applications. Sci Technol Adv Mater. 2022;23(1):446–456. DOI:10.1080/14686996.2022.2105659
  • Choi J, Nguyen D, Gi E, et al. A highly efficient and transparent luminescent solar concentrator based on a nanosized metal cluster luminophore anchored on polymers. J Mater Chem C. 2022;10:4402–4410.
  • Barras A, Das MR, Devarapalli RR, et al. One-Pot synthesis of gold nanoparticle/molybdenum cluster/graphene oxide nanocomposite and its photocatalytic activity. Appl Catal B. 2013;130-131:270–276.
  • Kumar S, Khatri OP, Cordier S, et al. Graphene oxide supported molybdenum cluster: first heterogenized homogeneous catalyst for the synthesis of dimethylcarbonate from CO2 and methanol. Chem Eur J. 2015;21(8):3488–3494.
  • Kumar P, Naumov NG, Boukherroub R, et al. Octahedral rhenium K4[Re6S8(CN)6] and Cu(OH)2 cluster modified TiO2 for the photoreduction of CO2 under visible light irradiation. Appl Catal a General. 2015;499:32–38.
  • Kumar P, Mungse HP, Cordier S, et al. Hexamolybdenum clusters supported on graphene oxide: visible-light induced photocatalytic reduction of carbon dioxide into methanol. Carbon. 2015;94:91–100.
  • Bůžek D, Hynek J, Kučeráková M, et al. MoII cluster complex-based coordination polymer as an efficient heterogeneous catalyst in the Suzuki–Miyaura coupling reaction. Eur J Inorg Chem. 2016;28:4668–4673.
  • Arnau Del Valle C, Felip-León C, Angulo-Pachón CA, et al. Photoactive hexanuclear molybdenum nanoclusters embedded in molecular organogels. Inorg Chem. 2019;58:8900–8905.
  • Feliz M, Atienzar P, Amela-Cortés M, et al. Supramolecular anchoring of octahedral molybdenum clusters onto graphene and their synergies in photocatalytic water reduction. Inorg Chem. 2019;58(22):15443–15454.
  • Nguyen TKN, Grasset F, Cordier S, et al. Preparation and characterization of hollow silica nanocomposite functionalized with UV absorbable molybdenum cluster. Adv Powder Technol. 2020;31(2):895–903.
  • Nguyen TKN, Matsui Y, Shirahata N, et al. Zn-Al layered double hydroxide-based nanocomposite functionalized with an octahedral molybdenum cluster exhibiting prominent photoactive and oxidation properties. Appl Clay Sci. 2020;196:105765.
  • Ivanova MN, Vorotnikov YA, Plotnikova EE, et al. Hexamolybdenum clusters supported on exfoliated h-BN nanosheets for photocatalytic water purification. Inorg Chem. 2020;59(9):6439–6448.
  • Puche M, García-Aboal R, Mikhaylov MA, et al. Enhanced photocatalytic activity and stability in hydrogen evolution of Mo6 iodide clusters supported on graphene oxide. Nanomaterials. 2020;10(7):1259.
  • Aubert T, Cabello-Hurtado F, Esnault MA, et al. Extended investigations on luminescent Cs2[Mo6Br14]@SiO2 nanoparticles: physico-structural characterizations and toxicity studies. J Phys Chem C. 2013;117(39):20154–20163.
  • Aubert T, Nerambourg N, Neaime C, et al. Multi-functional silica nanoparticles based on metal atom clusters: from design to toxicological studies. Key Eng Mater. 2014;617:179–183.
  • Vorotnikova NA, Efremova OA, Tsygankova AR, et al. Characterization and cytotoxicity studies of thiol‐modified polystyrene microbeads doped with [{Mo6X8}(NO3)6]2– (X = Cl, Br, I). Polym Adv Technol. 2016;27(7):922–928.
  • Neaime C, Amela-Cortes M, Grasset F, et al. Time-Gated luminescence bioimaging with new luminescent nanocolloids based on [Mo6I8(C2F5COO)6]2− metal atom clusters. Phys Chem Chem Phys. 2016;18(43):30166–30173.
  • Solovieva AO, Vorotnikov YA, Trifonova KE, et al. Cellular internalisation, bioimaging and dark and photodynamic cytotoxicity of silica nanoparticles doped by {Mo6I8}4+ metal clusters. J Mater Chem B. 2016;4(28):4839–4846.
  • Cabello-Hurtado F, Lozano-Baena MD, Neaime C, et al. Studies on plant cell toxicity of luminescent silica nanoparticles (Cs2[Mo6Br14]@SiO2) and its constitutive components J. Nanopart Res. 2016;18:3.
  • Beltran A, Mikhailov M, Sokolov MN, et al. A photobleaching resistant polymer supported hexanuclear molybdenum iodide cluster for photocatalytic oxygenations and photodynamic inactivation of staphylococcus aureus. J Mater Chem B. 2016;4:5975–5979.
  • Cheplakova AM, Solovieva AO, Pozmogova TN, et al. Nanosized mesoporous metal–organic framework MIL-101 as a nanocarrier for photoactive hexamolybdenum cluster compounds. J Inorg Biochem. 2017;166:100–107.
  • Felip-León C, Arnau Del Valle C, Pérez-Laguna V, et al. Superior performance of macroporous over gel type polystyrene as a support for the development of photo-bactericidal materials. J Mater Chem B. 2017;5:6058–6064.
  • Elistratova JG, Brylev KA, Solovieva AO, et al. Supporting effect of polyethylenimine on hexarhenium hydroxo cluster complex for cellular imaging applications. J Photochem Photobiol A Chem. 2017;340:46–52.
  • Pellen-Mussi P, Tricot-Doleux S, Neaime C, et al. Evaluation of functional SiO2 nanoparticles toxicity by a 3D culture model. J Nanosci Nanotechnol. 2018;18(5):3148–3157.
  • Brandhonneur N, Hatahet T, Amela-Cortes M, et al. Molybdenum cluster loaded PLGA nanoparticles: an innovative theranostic approach for the treatment of ovarian cancer. Eur J Pharm Biopharm. 2018;125:95–105.
  • Elistratova J, Mukhametshina A, Kholin K, et al. Interfacial uploading of luminescent hexamolybdenum cluster units onto amino-decorated silica nanoparticles as new design of nanomaterial for cellular imaging and photodynamic therapy. J Colloid Interface Sci. 2019;538:387–396.
  • Vorotnikov YA, Pozmogova TN, Solovieva AO, et al. Luminescent silica mesoparticles for protein transduction. Mater Sci Eng C. 2019;96:530–538.
  • Vorotnikova NA, Alekseev AY, Vorotnikov YA, et al. Octahedral molybdenum cluster as a photoactive antimicrobial additive to a fluoroplastic. Mater Sci Eng C. 2019;105:110150.
  • Vorotnikov YA, Novikova ED, Solovieva AO, et al. Single-Domain antibody C7b for address delivery of nanoparticles to HER2-positive cancers. Nanoscale. 2020;12:21885–21894.
  • Dollo G, Boucaud Y, Amela-Cortes M, et al. PLGA nanoparticles embedding molybdenum cluster salts: influence of chemical composition on physico-chemical properties, encapsulation efficiencies, colloidal stabilities and in vitro release. Int J Pharm. 2020;576:119025.
  • López-López N, Muñoz Resta I, de Llanos R, et al. Photodynamic inactivation of staphylococcus aureus biofilms using a hexanuclear molybdenum complex embedded in transparent polyhema hydrogels. ACS Biomater Sci Eng. 2020;6(12):6995–7003.
  • Kirakci K, Nguyen TKN, Grasset F, et al. Electrophoretically deposited layers of octahedral molybdenum cluster complexes: a promising coating for mitigation of pathogenic bacterial biofilms under blue light. ACS Appl Mater Interfaces. 2020;12(47):52492–52499.
  • Fedorenko S, Elistratova J, Stepanov A, et al. ROS-Generation and cellular uptake behavior of amino-silica nanoparticles arisen from their uploading by both iron-oxides and hexamolybdenum clusters. Mater Sci Eng C. 2020;117:111305.
  • Khlifi S, Taupier G, Amela-Cortes M, et al. Expanding the toolbox of octahedral molybdenum clusters and nanocomposites made thereof: evidence of two-photon absorption induced NIR emission and singlet oxygen production. Inorg Chem. 2021;60(8):5446–5451.
  • Brandhonneur N, Boucaud Y, Verger A, et al. Molybdenum cluster loaded PLGA nanoparticles as efficient tools against epithelial ovarian cancer. Int J Pharm. 2021;592:120079.
  • Khazieva A, Kholin K, Nizameev I, et al. Surface modification of silica nanoparticles by hexarhenium anionic cluster complexes for pH-sensing and staining of cell nuclei. J Colloid Interface Sci. 2021;594:759–769.
  • Elistratova JG, Mikhaylov MA, Sukhikh TS, et al. Anticancer potential of hexamolybdenum clusters [{Mo6I8}(L)6]2- (L = CF3COO- and C6F5COO-) incorporated into different nanoparticulate forms. J Mol Liq. 2021;343:117601.
  • Vorotnikova NA, Bardin VA, Vorotnikov YA, et al. Heterogeneous photoactive antimicrobial coatings based on a fluoroplastic doped with an octahedral molybdenum cluster compound. Dalton Trans. 2021;50:8467–8475.
  • Faizullin BA, Strelnik ID, Dayanova IR, et al. Structure impact on photodynamic therapy and cellular contrasting functions of colloids constructed from dimeric Au(I) complex and hexamolybdenum clusters. Mater Sci Eng C. 2021;128:112355.
  • Baker GL, Ghosh RN, Osborn DJ. Sol-gel encapsulated hexanuclear clusters for oxygen sensing by optical techniques. United States patent US7858380B2. 2010.
  • Ghosh RN, Askeland PA, Kramer S, et al. Optical dissolved oxygen sensor utilizing molybdenum chloride cluster phosphorescence. Appl Phys Lett. 2011;98(22):221103.
  • Elistratova J, Mikhailov M, Burilov V, et al. Supramolecular assemblies of triblock copolymers with hexanuclear molybdenum clusters for sensing antibiotics in aqueous solutions via energy transfer. RSC Adv. 2014;4:27922–27930.
  • Ghosh RN, Loloee R, Askeland PA, et al. Optical sensor and sensing system for oxygen monitoring in fluids using molybdenum cluster phosphorescence. United States patent US2014/0017127A1. 2014.
  • Litvinova YM, Gayfulin YM, Kovalenko KA, et al. Multifunctional metal–organic frameworks based on redox-active rhenium octahedral clusters. Inorg Chem. 2018;57:2072–2084.
  • Nguyen TKN, Dumait N, Grasset F, et al. Zn−al layered double hydroxide film functionalized by a luminescent octahedral molybdenum cluster: ultraviolet−visible photoconductivity response. ACS Appl Mater Interfaces. 2020;12:40495–40509.
  • Uchikoshi T, Nguyen TKN, Harada K, et al. Molybdenum cluster film-containing element, sensor, device, and method for measuring temperature, humidity, and light using them. Japanese patent A00486JP01. 2021.
  • Nguyen TKN, Harada K, Grasset F, et al. Light-Dependent ionic-electronic conduction in amorphous octahedral molybdenum cluster thin film. NPG Asia. 2022;14:21.
  • Molard Y, Ledneva A, Amela-Cortes M, et al. Ionically self-assembled clustomesogen with switchable magnetic/luminescence properties containing [Re6Se8(CN)6]n- (n = 3, 4) anionic clusters. Chem Mater. 2011;23:5122–5130.
  • Nerambourg N, Aubert T, Neaime C, et al. Multifunctional hybrid silica nanoparticles based on [Mo6Br14]2− phosphorescent nanosized clusters, magnetic γ-Fe2O3 and plasmonic gold nanoparticles. J Colloid Interface Sci. 2014;424:132–140.
  • Lunt RR, Kuttipillai PS. Nanocluster based light emitting device. United States patent US2015/0069366A1. 2015.
  • Prévôt M, Amela-Cortes M, Manna SK, et al. Design and integration in electro-optic devices of highly efficient and robust red-nir phosphorescent nematic hybrid liquid crystals containing [Mo6I8(OCOCnF2n+1)6]2-(n= 1, 2, 3) nanoclusters. Adv Funct Mater. 2015;25:4966–4975.
  • Wood SM, Prevot M, Amela-Cortes M, et al. Polarized phosphorescence of isotropic and metal-based clustomesogens dispersed into chiral nematic liquid crystalline films. Adv Opt Mater. 2015;3(10):1368–1372.
  • Prévôt M, Amela-Cortes M, Manna SK, et al. Electroswitchable red-NIR luminescence of ionic clustomesogen containing nematic liquid crystalline devices. J Mater Chem C. 2015;3:5152–5161.
  • Kuttipillai PS, Zhao Y, Traverse CJ, et al. Phosphorescent nanocluster light-emitting diodes. Adv Mater. 2016;28(2):320–326.
  • Huby N, Bigeon J, Lagneaux Q, et al. Facile design of red-emitting waveguides using hybrid nanocomposites made of inorganic clusters dispersed in SU8 photoresist host. Opt Mater. 2016;52:196–202.
  • Bigeon J, Huby N, Amela-Cortes M, et al. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes. Nanotechnology. 2016;27(25):255201.
  • Kuttipillai PS, Yang C, Chen P, et al. Enhanced electroluminescence efficiency in metal halide nanocluster based light emitting diodes through apical halide exchange. ACS Appl Energy Mater. 2018;1(8):3587–3592.
  • Ferreira Molina E, Martins de Jesus NA, Paofai S, et al. When a red–NIR-emissive Cs2[Mo6Br14] interacts with an active diureasil–peo matrix: design of tunable and white-light-emitting hybrid material. Chem Eur J. 2019;25(67):15248–15251.
  • Khlifi S, Fournier Le Ray N, Paofai S, et al. Self-Erasable inkless imprinting using a dual emitting hybrid organic-inorganic material. Mater Today. 2020;35:34–41.
  • Khlifi S, Bigeon J, Amela-Cortes M, et al. Poly(dimethylsiloxane) functionalized with complementary organic and inorganic emitters for the design of white emissive waveguides. J Mater Chem C. 2021;9(22):7094–7102.
  • Ly GT, Choi J, Kim Y, et al. One-Dimensional lead iodide hybrid stabilized by inorganic hexarhenium cluster cations as a new broadband emitter. RSC Adv. 2021;11(40):24580–24587.
  • Novikova ED, Vorotnikov YA, Nikolaev NA, et al. Synergetic effect of Mo6 clusters and gold nanoparticles on the photophysical properties of both components. Chem Eur J. 2021;27:2818–2825.
  • Novikova ED, Vorotnikov YA, Nikolaev NA, et al. The role of gold nanoparticles’ aspect ratio in plasmon-enhanced luminescence and the singlet oxygen generation rate of Mo6 clusters. Chem Commun. 2021;57:7770–7773.
  • Sciortino F, Cretu O, Karanikolas V, et al. Surface plasmon tunability of core-shell Au@Mo6 nanoparticles by shell thickness modification. J Phys Chem Lett. 2022;13:2150–2157.
  • Aubert T, Nerambourg N, Saito N, et al. Tunable Visible emission of luminescent hybrid nanoparticles incorporating two complementary luminophores: ZnO nanocrystals and [Mo6Br14]2− nanosized cluster units. Part Part Syst Charact. 2013;30(1):90–95.
  • Molard Y, Dorson F, Brylev KA, et al. Red-NIR luminescent hybrid poly(methyl methacrylate) containing covalently linked octahedral rhenium metallic clusters. Chem Eur J. 2010;16(19):5613–5619.
  • Molard Y, Dorson F, Cîrcu V, et al. Clustomesogens: liquid crystal materials containing transition‐metal clusters. Angew Chem Int Ed. 2010;49:3351–3355.
  • Mocanu AS, Amela-Cortes M, Molard Y, et al. Liquid crystal properties resulting from synergetic effects between non-mesogenic organic molecules and a one nanometre sized octahedral transition metal cluster. Chem Commun. 2011;47:2056–2058.
  • Thangaraju D, Gredin P, Mortier M, et al. Enhanced infrared emission characteristics of multifunctional β-NaYF4:YB:Er@NaYF4@Cs2[Mo6Br14]@SiO2 core-shell nanostructures. ISIEM 2013 Conferences; Rennes, France. 2013.
  • Molard Y, Labbé C, Cardin J, et al. Sensitization of Er3+ infrared photoluminescence embedded in a hybrid organic‐inorganic copolymer containing octahedral molybdenum clusters. Adv Funct Mater. 2013;23(38):4821–4825.
  • Golubeva ND, Adamenko OA, Boiko GN, et al. Synthesis, structure, and properties of new hybrid nanocomposites containing the [Mo6(μ3-Cl)8]4+. Inorg Mater. 2014;40(3):306–313.
  • Amela-Cortes M, Garreau A, Cordier S, et al. Deep red luminescent hybrid copolymer materials with high transition metal cluster content. J Mater Chem C. 2014;2(8):1545–1552.
  • Amela-Cortes M, Cordier S, Naumov NG, et al. Hexacyano octahedral metallic clusters as versatile building blocks in the design of extended polymeric framework and clustomesogens. J Mater Chem C. 2014;2:9813–9823.
  • Efremova OA, Brylev KA, Kozlova O, et al. Polymerisable octahedral rhenium cluster complexes as precursors for photo/electroluminescent polymers. J Mater Chem C. 2014;2(40):8630–8638.
  • Efremova OA, Shestopalov MA, Chirtsova NA, et al. A highly emissive inorganic hexamolybdenum cluster complex as a handy precursor for the preparation of new luminescent materials. Dalton Trans. 2014;43:6021–6025.
  • Neaime C, Nerambourg N, Aubert T, et al. Magnetic and fluorescent hybrid silica nanoparticles based on the co-encapsulation of γ-Fe2O3 nanocrystals and [Mo6Br14]2- luminescent nanosized clusters by water-in-oil microemulsion. Key Eng Mater. 2014;617:174–178.
  • Amela-Cortes M, Paofai S, Cordier S, et al. Tuned red NIR phosphorescence of polyurethane hybrid composites embedding metallic nanoclusters for oxygen sensing. Chem Commun. 2015;51(38):8177–8180.
  • Cîrcu V, Molard Y, Amela-Cortes M, et al. From mesomorphic phosphine oxide to clustomesogens containing molybdenum and tungsten octahedral cluster cores. Angewandte Chem Int Ed. 2015;54:10921.
  • Nayak SK, Amela-Cortes M, Roiland C, et al. From metallic cluster-based ceramics to nematic hybrid liquid crystals: a double supramolecular approach. Chem Commun. 2015;51:3774–3777.
  • El Osta R, Demont A, Audebrand N, et al. Supramolecular frameworks built up from red-phosphorescent trans-Re6 cluster building blocks: one pot synthesis, crystal structures, and DFT investigations. Z Anorg Allg Chem. 2015;641(6):1156–1163.
  • Robin M, Kuai W, Amela-Cortes M, et al. Epoxy based ink as versatile material for inkjet-printed devices. ACS Appl Mater Interfaces. 2015;7(39):21975–21984.
  • Efremova OA, Brylev KA, Vorotnikov YA, et al. Photoluminescent materials based on PMMA and a highly-emissive octahedral molybdenum metal cluster complex. J Mater Chem C. 2016;4(3):497–503.
  • Nayak SK, Amela-Cortes M, Neidhardt MM, et al. Phosphorescent columnar hybrid materials containing polyionic inorganic nanoclusters. Chem Commun. 2016;52:3127–3130.
  • Amela-Cortes M, Molard Y, Paofai S, et al. Versatility of the ionic assembling method to design highly luminescent PMMA nanocomposites containing [M6Qi8La6]n- octahedral nano-building blocks. Dalton Trans. 2016;45:237–245.
  • Vorotnikov YA, Efremova OA, Vorotnikova NA, et al. On the synthesis and characterisation of luminescent hybrid particles: Mo6 metal cluster complex/SiO2. RSC Adv. 2016;6(49):43367–43375.
  • Truong TG, Dierre B, Grasset F, et al. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films. Sci Technol Adv Mater. 2016;17:443–453.
  • Nguyen TKN, Grasset F, Dierre B, et al. Fabrication of transparent thin film of octahedral molybdenum metal clusters by electrophoretic deposition. ECS J Solid State Sci Technol. 2016;5:R178–R186.
  • Svezhentseva EV, Solovieva AO, Vorotnikov YA, et al. Water-soluble hybrid materials based on {Mo6X8}4+ (X = Cl, Br, I) cluster complexes and sodium polystyrene sulfonate. New J Chem. 2017;41:1670–1676.
  • Vorotnikova NA, Edeleva MV, Kurskaya OG, et al. One-pot synthesis of {Mo6I8}4+-doped polystyrene microspheres via a free radical dispersion copolymerisation reaction. Polym Int. 2017;66(12):1906–1912.
  • Evtushok DV, Vorotnikova NA, Logvinenko VA, et al. Luminescent coordination polymers based on Ca2+ and octahedral cluster anions [{M6Cli8}Cla6]2− (M = Mo, W): synthesis and thermal stability studies. New J Chem. 2017;41(24):14855–14861.
  • Moussawi MA, Leclerc-Laronze N, Floquet S, et al. Polyoxometalate, cationic cluster, and γ-cyclodextrin: from primary interactions to supramolecular hybrid materials. J Am Chem Soc. 2017;139(36):12793–12803.
  • Nguyen TKN, Dierre B, Grasset F, et al. Formation mechanism of transparent Mo6 metal atom cluster film prepared by electrophoretic deposition. J Electrochem Soc. 2017;164:D412–D418.
  • Chen W, Wilmet M, Truong TG, et al. Embedding hexanuclear tantalum bromide cluster {Ta6Br12} into SiO2 nanoparticles by reverse microemulsion method. Heliyon. 2018;4(6):e00654.
  • Ivanov AA, Falaise C, Abramov PA, et al. Host-Guest binding hierarchy within redox- and luminescence-responsive supramolecular self-assembly based on chalcogenide clusters and γ-cyclodextrin. Chem A Eur J. 2018;24(51):13467–13478.
  • Camerel F, Kinloch F, Jeannin O, et al. Ionic columnar clustomesogens: associations between anionic hexanuclear rhenium clusters and liquid crystalline triphenylene tethered imidazoliums. Dalton Trans. 2018;47:10884–10896.
  • Gandubert A, Amela-Cortes M, Nayak SK, et al. Tailoring the self-assembling abilities of functional hybrid nanomaterials: from rod-like to disk-like clustomesogens based on a luminescent {Mo6Br8}4+ inorganic cluster core. J Mater Chem C. 2018;6:2556–2564.
  • Guy K, Ehni P, Paofai S, et al. Lord of the Crowns: a new precious in the kingdom of clustomesogens. Angewandte Chem. 2018;130:11696–11866.
  • Abramov PA, Ivanov AA, Shestopalov MA, et al. Supramolecular adduct of γ-Cyclodextrin and [{Re6Q8}(H2O)6]2+ (Q=S, Se). J Clust Sci. 2018;29(1):9–13.
  • Robin M, Dumait N, Amela-Cortes M, et al. Direct Integration of red-NIR emissive ceramic-like AnM6Xi8Xa6 metal cluster salts in organic copolymers using supramolecular interactions. Chem A Eur J. 2018;24(19):4825–4829.
  • Volostnykh MV, Mikhaylov MA, Sinelshchikova AA, et al. Hybrid organic–inorganic supramolecular systems based on a pyridine end-decorated molybdenum(ii) halide cluster and zinc(ii) porphyrinate. Dalton Trans. 2019;48:1835–1842.
  • Nguyen TKN, Dubernet M, Matsui Y, et al. Transparent functional nanocomposite films based on octahedral metal clusters: synthesis by electrophoretic deposition process and characterization. R Soc Open Sci. 2019;6:181647.
  • Litvinova YM, Gayfulin YM, Brylev KA, et al. Metal–organic frameworks with solvent-free lanthanide coordination environments: synthesis from aqueous ethanol solutions. Cryst Eng Comm. 2020;22:7935–7943.
  • Falaise C, Ivanov AA, Molard Y, et al. From supramolecular to solid-state chemistry: crystal engineering of luminescent materials by trapping molecular clusters in an aluminium-based host matrix. Mater Horizons. 2020;7:2399–2406.
  • Ivanov AA, Falaise C, Shmakova AA, et al. Cyclodextrin-assisted hierarchical aggregation of Dawson-type polyoxometalate in the presence of {Re6Se8} based clusters. Inorg Chem. 2020;59(16):11396–11406.
  • Hummel T, Dutczak D, Alekseev AY, et al. Photodynamic properties of tungsten iodide clusters incorporated into silicone: A2[M6I8L6]@silicone. RSC Adv. 2020;10(37):22257–22263.
  • Falaise C, Khlifi S, Bauduin P, et al. “Host in host” supramolecular core–shell type systems based on giant ring-shaped polyoxometalates. Angewandte Chem Int Ed. 2021;60(25):14146–14153.
  • Audebrand N, Demont A, El Osta R, et al. Supramolecular frameworks based on rhenium clusters using the synthons approach. Molecules. 2021;26(9):2662.
  • Konovalov DI, Ivanov AA, Vorotnikov YA, et al. Self-Assembled microporous M-HOFs based on an octahedral rhenium cluster with benzimidazole. Inorg Chem. 2021;60(19):14687–14696.
  • Litvinova YM, Gayfulin YM, Samsonenko DG, et al. Coordination polymers based on rhenium octahedral chalcocyanide cluster [Re6Se8(CN)6]4- and lanthanide ions solvated with dimethylformamide. Inorg Chim Acta. 2021;528:120597.
  • Liang Y, Sokolov MN, Mikhaylov MA, et al. A 3D electropolymerized thin film based on an isoporphyrin and on a pyridine end-decorated molybdenum(ii) halide cluster: photoelectrochemical and impedance properties. Electrochim Acta. 2021;388:138493.
  • Nguyen TKN, Bourgès C, Naka T, et al. Synthesis of novel hexamolybdenum cluster-functionalized copper hydroxide nanocomposites and its catalytic activity for organic molecule degradation. Sci Technol Adv Mater. 2021;22(1):758–771.
  • Zhang MQ, Grasset F, Dumait N, et al. Effect of sulfurization process on octahedral molybdenum cluster from Mo6 cluster to MoS2 nanosheet. Key Eng Mater. 2021;904:334–338.
  • Ebert M, Carrasco I, Dumait N, et al. Joint venture of metal cluster and amphiphilic cationic minidendron resulting in near infrared emissive lamellar ionic liquid crystals. Chem A Eur J. 2022;28:e202103446.
  • José-Yacamán M, Rendón L, Arenas L, et al. Maya blue paint: an ancient nanostructured material. Science. 1996;273(5272):223–225.
  • Wang J, Hussain Shah Z, Zhang S, et al. Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications. Nanoscale. 2014;6(9):4418–4437.
  • Ow H, Larson DR, Srivastava M, et al. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 2005;5(1):113–117.
  • Vivero-Escoto JL, Huxford-Phillips RC, Lin W. Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev. 2012;41:2673–2685.
  • Caltagirone C, Bettoschi A, Garau A, et al. Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev. 2015;44:4645–4671.
  • Singh P, Srivastava S, Kumar Singh S. Nanosilica: recent progress in synthesis, functionalization, biocompatibility, and biomedical applications. ACS Biomater Sci Eng. 2019;5:4882–4898.
  • Li Z, Mu Y, Peng C, et al. Understanding the mechanisms of silica nanoparticles for nanomedicine. Wires Nanomed Nanobiotechnol. 2021;13:e1658.
  • Lowe J, Stock D, Jap B, et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 a resolution. Science. 1995;268:533–539.
  • Cramer P, Bushnell DA, Fu J, et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science. 2000;288:640–649.
  • Ferreira KN, Iverson TM, Maghlaoui K, et al. Architecture of the photosynthetic oxygen-evolving center. Science. 2004;43:1831–1839.
  • Mullan BF, Madsen MT, Messerle L, et al. X-ray attenuation coefficients of high-atomic-number, hexanuclear transition metal cluster compounds: a new paradigm for radiographic contrast agents. Acad Radiol. 2000;7:254–259.
  • Grasset F, Labhsetwar N, Li D, et al. Synthesis and magnetic characterization of zinc ferrite nanoparticles with different environments: powder, colloidal solution, and zinc ferrite-silica core-shell nanoparticles. Langmuir. 2002;18:8209–8216.
  • El Mendili Y, Bardeau JF, Randrianantoandro N, et al. Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix: γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3. Sci Technol Adv Mater. 2016;17(1):597–609.
  • Zhang KY, Yu Q, Wei H, et al. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem Rev. 2018;118:1770–1839.
  • Liu P, Mu X, Zhang XD, et al. The near-infrared-II fluorophores and advanced microscopy technologies development and application in bioimaging. Bioconjugate Chem. 2020;31:260–275.
  • Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–69.
  • de la Torre C, Gavara R, García-Fernández A, et al. Enhancement of photoactivity and cellular uptake of (Bu4N)2[Mo6I8(CH3COO)6] complex by loading on porous MCM-41 support. Photodynamic studies as an anticancer agent. Biomater Adv. 2022;140:213057.
  • Chubar N, Gilmour R, Gerda V, et al. Layered double hydroxides as the next generation inorganic anion exchangers: synthetic methods versus applicability. Adv Colloid Inter Sci. 2017;245:62–80.
  • Wu MJ, Wu JZ, Zhang J, et al. A review on fabricating heterostructures from layered double hydroxides for enhanced photocatalytic activities. Catal Sci Technol. 2018;8:1207–1228.
  • Rocha MG, Nakagaki S, Ucoski GM, et al. Comparison between catalytic activities of two zinc layered hydroxide salts in brilliant green organic dye bleaching. J Colloid Interface Sci. 2019;541:425–433.
  • Yang Z, Zhang C, Zeng G, et al. Design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: a review. J Mater Chem A. 2020;8:4141–4173.
  • Zobir SAM, Ali A, Adzmi F, et al. A review on nanopesticides for plant protection synthesized using the supramolecular chemistry of layered hydroxide hosts. Biology (Basel). 2021;10(11):1077.
  • Ahmed AAA, Talib ZA, Hussein MZ. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide. Mater Res Bull. 2015;62:122–131.
  • https://www.mordorintelligence.com/industry-reports/thin-film-material-market
  • Corni I, Ryan MP, Boccaccini AR. Electrophoretic deposition: from traditional ceramics to nanotechnology. J Eur Ceram Soc. 2008;28:1353–1367.
  • Sakka Y, Uchikoshi T. Forming and microstructure control of ceramics by electrophoretic deposition. KONA Powder Part J. 2010;28:74–90.
  • Pascall AJ, Qian F, Wang G, et al. Light-directed electrophoretic deposition: a new additive manufacturing technique for arbitrarily patterned 3D composites. Adv Mater. 2014;26:2252–2256.
  • Hu S, Li W, Finklea F, et al. A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells. Adv Colloid Interface Sci. 2020;276:102102.
  • Rehman MAU, Chen Q, Braem A, et al. Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges. Int Mater Rev. 2021;66(8):533–562.
  • Hadzhieva Z, Boccaccini AR. Recent developments in electrophoretic deposition (EPD) of antibacterial coatings for biomedical applications - a review. Curr Opin Biomed Eng. 2022;21:100367.
  • Kreuer KD, Rabenau A, Weppner W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew Chem Int Ed Engl. 1982;21:208–209.
  • Kim GY, Senocrate A, Yang TY, et al. Large tunable photo effect on ion conduction in halide perovskites and implications for photodecomposition. Nat Mater. 2018;17:445–449.
  • Bisri SZ, Piliego C, Gao J, et al. Outlook and emerging semiconducting materials for ambipolar transistors. Adv Mater. 2014;26:1176–1199.
  • Chen L, Léger Y, Loget G, et al. Epitaxial III–V/Si vertical heterostructures with hybrid 2D-semimetal/semiconductor ambipolar and photoactive properties. Adv Sci. 2022;9:2101661.
  • Jeon CW, Lee SS, Park IK. Flexible visible-blind ultraviolet photodetectors based on ZnAl- layered double hydroxide nanosheet scroll. ACS Appl Mater Interfaces. 2019;11:35138–35145.
  • Wang X, Ning X, Shao Q, et al. ZnFeal-layered double hydroxides/TiO2 composites as photoanodes for photocathodic protection of 304 stainless steel. Sci Rep. 2018;8:4116–4124.
  • Ding P, Luo F, Wang P, et al. Photo-induced charge kinetic acceleration in ultrathin layered double hydroxide nanosheets boosts the oxygen evolution reaction. J Mater Chem A. 2020;8:1105–1112.
  • Kirakci K, Fejfarová K, Martinčík J, et al. Tetranuclear copper(i) iodide complexes: a new class of X-ray phosphors. Inorg Chem. 2017;56:4609–4614.
  • Thefioux Y, Cordier M, Massuyeau F, et al. Polymorphic copper iodide anions: luminescence thermochromism and mechanochromism of (PPh4)2[Cu2I4]. Inorg Chem. 2020;59(8):5768–5780.
  • Perruchas S. Molecular copper iodide clusters: a distinguishing family of mechanochromic luminescent compounds. Dalton Trans. 2021;50(35):12031–12044.
  • Zheng HW, Yang DD, Liang QF, et al. A diamond-like cuprous coordination polymer based on the [Cu8I6]2+ cluster with multistimuli-responsive luminescence and iodine adsorption behaviour. J Mater Chem C. 2022;10:3901–3907.
  • Guthrie DH, Corbett JD. Two zirconium iodide clusters. Hexazirconium dodecaiodide (Zr6I12) and cesium hexazirconium tetradecaiodide (CsZr6I14). Inorg Chem. 1982;21:3290–3295.
  • Xue ZZ, Meng XD, Li XY, et al. Luminescent thermochromism and white-light emission of a 3D [Ag4Br6] cluster-based coordination framework with both Adamantane-like node and linker. Inorg Chem. 2021;60(7):4375–4379.
  • Jäger MOJ, Morooka EV, Federici Canova F, et al. Machine learning hydrogen adsorption on nanoclusters through structural descriptors. Npj Comput Mater. 2018;4:37.
  • Zeni C, Rossi K, Glielmo A, et al. Building machine learning force fields for nanoclusters. J Chem Phys. 2018;148:241739.
  • Li J, Chen T, Lim K, et al. Deep learning accelerated gold nanocluster synthesis. Adv Intell Syst. 2019;1:1900029.
  • Wu Z, Yao Q, Zang S, et al. Directed self-assembly of ultrasmall metal nanoclusters. ACS Mater Lett. 2019;1:237–248.
  • Seriani N. An ab-initio study of clusters as building blocks for crystals: from Prussian blue analogues to hybrid perovskites. Phys Status Solidi B. 2022;10:2200045-2200054. (1002/pssb.202200045).
  • Guy K, Tessier F, Kaper H, et al. Original synthesis of molybdenum nitrides using metal cluster compounds as precursors for heterogeneous catalysis applications. Chem Mater. 2020;32(14):6026–6034.
  • Guy K. « Synthèse de carbures et de nitrures d’éléments de transition à partir de clusters métalliques: applications en catalyse hétérogène » [ Thesis Rennes 1 Univ]; 2020. http://www.theses.fr/2020REN1S090
  • Higashino S, Miyake M, Fujii H, et al. Electrodeposition of Al-W alloy films in a 1-ethyl-3-methyl-imidazolium chloride-AlCl3 ionic liquid containing W6Cl12. J Electrochem Soc. 2017;164(4):D120–D125.
  • Higashino S, Takeuchi Y, Miyake M, et al. Tungsten(ii) chloride hydrates with high solubility in chloroaluminate ionic liquids for the electrodeposition of Al–W alloy films. J Electroanal Chem. 2022;912:116238.