4,261
Views
19
CrossRef citations to date
0
Altmetric
Focus on Frontline Research on Biomaterials-based Bioengineering for Future Therapy

Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices

ORCID Icon
Pages 498-524 | Received 11 Jul 2022, Accepted 28 Aug 2022, Published online: 13 Sep 2022

References

  • Aronson JK, Heneghan C, Ferner RE. Medical devices: definition, classification, and regulatory implications. Drug Saf. 2020;43(2):83–93.
  • Pacheco KA. Allergy to surgical implants. Clin Rev Allergy Immunol. 2019;56(1):72–85.
  • Hong JK, Gao L, Singh J, et al. Evaluating medical device and material thrombosis under flow: current and emerging technologies. Biomater Sci. 2020;8(21):5824–5845.
  • Percival SL, Suleman L, Vuotto C, et al. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64(Pt 4):323–334.
  • Dinca V. Advanced functional bio-interfaces engineering for medical applications: from drug delivery to bio-scaffolds. Curr Med Chem. 2020;27(6):836–837.
  • Kerch G. Polymer hydration and stiffness at biointerfaces and related cellular processes. Nanomedicine. 2018;14(1):13–25.
  • Narkar AR, Tong Z, Soman P, et al. Smart biomaterial platforms: controlling and being controlled by cells. Biomaterials. 2022;283:121450.
  • Davidson MD, Burdick JA, Wells RG. Engineered biomaterial platforms to study fibrosis. Adv Healthc Mater. 2020;9(8):e1901682.
  • Ratner BD. Biomaterials: been there, done that, and evolving into the future. Annu Rev Biomed Eng. 2019;21(1):171–191.
  • Dutra GVS, Neto WS, Dutra JPS, et al. Implantable medical devices and tissue engineering: an overview of manufacturing processes and the use of polymeric matrices for manufacturing and coating their surfaces. Curr Med Chem. 2020;27(10):1580–1599.
  • Südhof TC. The cell biology of synapse formation. J Cell Biol. 2021;220(7):e202103052.
  • Wang H, Liu Y, He R, et al. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater Sci. 2020;8(2):552–568.
  • Huang LL, Nie W, Zhang J, et al. Cell-membrane-based biomimetic systems with bioorthogonal functionalities. Acc Chem Res. 2020 Jan 21;53(1):276–287. DOI:10.1021/acs.accounts.9b00559
  • Li Y, Gan Y, Li C, et al. Cell membrane-engineered hybrid soft nanocomposites for biomedical applications. J Mater Chem B. 2020;8(26):5578–5596.
  • Zafar MS, Amin F, Fareed MA, et al. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics (Basel). 2020;5(3):34.
  • Souza JCM, Sordi MB, Kanazawa M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019;94:112–131.
  • Yu L, Wei M. Biomineralization of collagen-based materials for hard tissue repair. Int J Mol Sci. 2021;22(2):944.
  • Dahms HU, Dobretsov S. Antifouling compounds from marine macroalgae. Mar Drugs. 2017;15(9):265.
  • Leonardi AK, Ober CK. Polymer-based marine antifouling and fouling release surfaces: strategies for synthesis and modification. Annu Rev Chem Biomol Eng. 2019;10(1):241–264.
  • Vellwock AE, Su P, Zhang Z, et al. Reconciling the conflict between optical transparency and fouling resistance with a nanowrinkled surface inspired by zebrafish’s cornea. ACS Appl Mater Interfaces. 2022;14(6):7617–7625.
  • Fathi F, Sadrnia M, Arjomandzadegan M, et al. In vitro and in vivo evaluation of antibacterial and anti-biofilm properties of five ethnomedicinal plants against oral bacteria by TEM. Avicenna J Phytomed. 2021;11(2):180–189.
  • Schmalz G, Cieplik F. Biofilms on restorative materials. Monogr Oral Sci. 2021;29:155–194.
  • Jaffer IH, Weitz JI. The blood compatibility challenge. Part 1: blood-contacting medical devices: the scope of the problem. Acta Biomater. 2019;94:2–10.
  • Brash JL, Horbett TA, Latour RA, et al. The blood compatibility challenge. Part 2: protein adsorption phenomena governing blood reactivity. Acta Biomater. 2019;94:11–24.
  • Zheng Z, Ao X, Xie P, et al. The biological width around implant. J Prosthodont Res. 2021;65(1):11–18.
  • Bhushan B. Biomimetics: lessons from nature–an overview. Philos Trans a Math Phys Eng Sci. 2009;367(1893):1445–1486.
  • Barhoum A, García-Betancourt ML, Jeevanandam J, et al. Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials (Basel). 2022;12(2):177.
  • Rahimnejad M, Rabiee N, Ahmadi S, et al. Emerging phospholipid nanobiomaterials for biomedical applications to lab-on-a-chip, drug delivery, and cellular engineering. ACS Appl Bio Mater. 2021;4(12):8110–8128.
  • Ishihara K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. Langmuir. 2019;35(5):1778–1787.
  • Lin W, Kampf N, Goldberg R, et al. Poly-Phosphocholinated liposomes form stable superlubrication vectors. Langmuir. 2019;35(18):6048–6054.
  • London E. Membrane structure-function insights from asymmetric lipid vesicles. Acc Chem Res. 2019;52(8):2382–2391.
  • Ananthanarayanan B, Little L, Schaffer DV, et al. Neural stem cell adhesion and proliferation on phospholipid bilayers functionalized with RGD peptides. Biomaterials. 2010;31(33):8706–8715.
  • Kaladhar K, Sharma CP. Supported cell mimetic monolayers and their interaction with blood. Langmuir. 2004;20(25):11115–11122.
  • Monge S, Canniccioni B, Graillot A, et al. Phosphorus-containing polymers: a great opportunity for the biomedical field. Biomacromolecules. 2011;12(6):1973–1982.
  • Hiranphinyophat S, Iwasaki Y. Controlled biointerfaces with biomimetic phosphorus-containing polymers. Sci Technol Adv Mater. 2021;22(1):301–316.
  • Xu Y, Takai M, Ishihara K. Phospholipid polymer biointerfaces for lab-on-a-chip devices. Ann Biomed Eng. 2010;38(6):1938–1953.
  • Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for biomedical applications. Anal Bioanal Chem. 2005;381(3):534–546.
  • Goda T, Ishihara K. Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Rev Med Devices. 2006;3(2):167–174.
  • Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci Technol Adv Mater. 2012;13(6):064101.
  • Ishihara K. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. Sci Technol Adv Mater. 2000;1(3):131–138.
  • Lewis AL, Lloyd AW. Biomedical applications of biomimetic polymers: the phosphorylcholine-containing polymers in biomimetic, bioresponsive, and bioactive materials: an introduction to integrating materials with tissues. In: Santin M. Phillips G, editors. Chapter 4, John Wiley & Sons; 2012. p. 95–140.
  • Erfani A, Seaberg J, Aichele CP, et al. Interactions between biomolecules and zwitterionic moieties: a review. Biomacromolecules. 2020;21(7):2557–2573.
  • Cao B, Tang Q, Cheng G. Recent advances of zwitterionic carboxybetaine materials and their derivatives. J Biomater Sci Polym Ed. 2014;25(14–15):1502–1513.
  • Sin MC, Chen SH, Chang Y. Hemocompatibility of zwitterionic interfaces and membranes. Polym J. 2015;46(8):436–443.
  • Racovita S, Trofin MA, Loghin DF, et al. Polybetaines in biomedical applications. Int J Mol Sci. 2021;22(17):9321.
  • Chang Y. Design of zwitterionic polymers. J Polym Res. 2022;29(7):286.
  • Zheng L, Sundaram HS, Wei Z, et al. Applications of zwitterionic polymers. React Funct Polym. 2017;118:51–61.
  • Ishihara K. Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J Biomed Mater Res A. 2019;107(5):933–943.
  • Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and properties as hydrogel membranes. Polym J. 1990;22(5):355–360.
  • Ueda T, Oshida H, Kurita K, et al. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym J. 2002;24:1259–1269.
  • Ishihara K, Fukazawa K. 2-Methacryloyloxyethyl phosphorylcholine polymer. In: Monge S, and David G, editors. Phosphorus-based polymers: from synthesis to applications. Cambridge, UK: RSC Publishing; 2014. p. 68–96.
  • Ma IY, Lobb EJ, Billingham NC, et al. Synthesis of biocompatible polymers. 1. Homopolymerization of 2-methacryloyloxyethyl phosphorylcholine via ATRP in protic solvents: an optimization study. Macromolecules. 2002;35(25):9306–9314.
  • Chantasirichot S, Inoue Y, Ishihara K. Photoinduced atom transfer radical polymerization in a polar solvent to synthesize a water-soluble poly(2-methacryloyloxyethyl phosphorylcholine) and its block-type copolymers. Polymer. 2015;61:55–60.
  • Feng W, Zhu S, Ishihara K, et al. Adsorption of fibrinogen and lysozyme on silicon grafted with poly (2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir. 2005;21(13):5980–5987.
  • Ishihara K, Suzuki K, Inoue Y, et al. Effects of molecular architecture of photoreactive phospholipid polymer on adsorption and reaction on substrate surface under aqueous condition. J Biomater Sci Polym Ed. 2021;32(4):419–437.
  • Inoue Y, Watanabe J, Takai M, et al. Synthesis of sequence-controlled copolymers from extremely polar and apolar monomers by living radical polymerization and their phase-separated structures. J Polym Sci Part A. 2005;43(23):6073–6083.
  • Asif S, Asawa K, Inoue Y, et al. Validation of an MPC polymer coating to attenuate surface-induced crosstalk between the complement and coagulation systems in whole blood in in vitro and in vivo models. Macromol Biosci. 2019;19(5):e1800485.
  • Chen Z. Surface hydration and antifouling activity of zwitterionic polymers. Langmuir. 2022;38(15):4483–4489.
  • Higaki Y, Kobayashi M, Takahara A. Hydration state variation of polyzwitterion brushes through interplay with ions. Langmuir. 2020;36(31):9015–9024.
  • Ishihara K, Mu M, Konno T, et al. The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). J Biomater Sci Polym Ed. 2017;28(10–12):884–899.
  • Kitano H. Characterization of polymer materials based on structure analyses of vicinal water. Polym J. 2016;48(1):15–24.
  • Yaminsky VV, Vogler EA. Hydrophobic hydration. Curr Opin Colloid Interface Sci. 2001;6(4):342–349.
  • Inoue KI, Singh PC, Nihonyanagi S, et al. Cooperative hydrogen-bond dynamics at a zwitterionic lipid/water interface revealed by 2D HD-VSFG spectroscopy. J Phys Chem Lett. 2017;8(20):5160–5165.
  • Higuchi Y, Asano Y, Kuwahara T, et al. Rotational dynamics of water at the phospholipid bilayer depending on the head groups studied by molecular dynamics simulations. Langmuir. 2021;37(17):5329–5338.
  • Shiomoto S, Inoue K, Higuchi H, et al. Characterization of hydration water bound to choline phosphate-containing polymers. Biomacromolecules. 2022;23(7):2999–3008.
  • Nguyen TL, Mukai M, Ihara D, et al. Association behavior of a homopolymer containing choline phosphonate groups in aqueous solutions. Chem Lett. 2022;51(2):103–106.
  • Neitzel AE, De Hoe GX, Tirrell MV. Expanding the structural diversity of polyelectrolyte complexes and polyzwitterions. Curr Opin Solid State Mater Sci. 2021;25(2):100897.
  • Kobayashi M, Ishihara K, Takahara A. Neutron reflectivity study of the swollen structure of polyzwitterion and polyeletrolyte brushes in aqueous solution. J Biomater Sci Polym Ed. 2014;25(14–15):1673–1686.
  • Ishihara K, Fukazawa K. Cell-Membrane-Inspired polymers for constructing biointerfaces with efficient molecular recognition. J Mater Chem B. 2022;10(18):3397–3419.
  • Leigh BL, Cheng E, Xu L, et al. Antifouling photograftable zwitterionic coatings on PDMS substrates. Langmuir. 2019;35(5):1100–1110.
  • Wu J, Xiao Z, Chen A, et al. Sulfated zwitterionic poly(sulfobetaine methacrylate) hydrogels promote complete skin regeneration. Acta Biomater. 2018;71:293–305.
  • Shen N, Cheng E, Whitley JW, et al. Photograftable zwitterionic coatings prevent Staphylococcus aureus and Staphylococcus epidermidis adhesion to PDMS surfaces. ACS Appl Bio Mater. 2021;4(2):1283–1293.
  • Qiu X, Zhang J, Cao L, et al. Antifouling antioxidant zwitterionic dextran hydrogels as wound dressing materials with excellent healing activities. ACS Appl Mater Interfaces. 2021;13(6):7060–7069.
  • Iqbal Z, Kim S, Moyer J, et al. In vitro and in vivo hemocompatibility assessment of ultrathin sulfobetaine polymer coatings for silicon-based implants. J Biomater Appl. 2019;34(2):297–312.
  • Bennion DM, Horne R, Peel A, et al. Zwitterionic photografted coatings of cochlear implant biomaterials reduce friction and insertion forces. Otol Neurotol. 2021;42(10):1476–1483.
  • Ga DH, Lim CM, Jang Y, et al. Surface-Modifying effect of zwitterionic polyurethane oligomers complexed with metal ions on blood compatibility. Tissue Eng Regen Med. 2022;19(1):35–47.
  • Zhang M, Yu P, Xie J, et al. Recent advances of zwitterionic-based topological polymers for biomedical applications. J Mater Chem B. 2022;10(14):2338–2356.
  • Suo D, Rao J, Wang H, et al. A universal biocompatible coating for enhanced lubrication and bacterial inhibition. Biomater Sci. 2022;10(13):3493–3502.
  • Mary P, Bendejacq DD, Labeau MP, et al. Reconciling low- and high-salt solution behavior of sulfobetaine polyzwitterions. J Phys Chem B. 2007;111(27):7767–7777.
  • Berlinova IV, Dimitrov IV, Kalinova RG, et al. Synthesis and aqueous solution behaviour of copolymers containing sulfobetaine moieties in side chains. Polymer. 2000;41(3):831–837.
  • Ahmed ST, Madinya JJ, Leckband DE. Ionic strength dependent forces between end-grafted Poly (sulfobetaine) films and mica. J Colloid Interface Sci. 2022;606:298–306.
  • Xiang Y, Xu RG, Leng Y. Molecular understanding of ion effect on polyzwitterion conformation in an aqueous environment. Langmuir. 2020;36(26):7648–7657.
  • Nakagawa Y, Saitou A, Aoyagi T, et al. Apoptotic cell membrane-inspired polymer for immunosuppression. ACS Macro Lett. 2017;6(9):1020–1024.
  • Ebara M. Apoptotic cell-mimetic polymers for anti-inflammatory therapy. Chonnam Med J. 2019;55(1):1–7.
  • Nakagawa Y, Lee J, Liu Y, et al. Microglial immunoregulation by apoptotic cellular membrane mimetic polymeric particles. ACS Macro Lett. 2022;11(2):270–275.
  • Hu G, Emrick T. Functional choline phosphate polymers. J Am Chem Soc. 2016;138(6):1828–1831.
  • Mukai M, Ihara D, Chu CW, et al. Synthesis and hydration behavior of a hydrolysis-resistant quasi-choline phosphate zwitterionic polymer. Biomacromolecules. 2020;21(6):2125–2131.
  • Li B, Jain P, Ma J, et al. Trimethylamine N-oxide-derived zwitterionic polymers: a new class of ultralow fouling bioinspired materials. Sci Adv. 2019;5(6):eaaw9562.
  • Li H, Li X, Ji J. Mixed-charge bionanointerfaces: opposite charges work in harmony to meet the challenges in biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(3):e1600.
  • Sakata S, Inoue Y, Ishihara K. Precise control of surface electrostatic forces on polymer brush layers with opposite charges for resistance to protein adsorption. Biomaterials. 2016;105:102–108.
  • Lin S, Li Y, Zhang L, et al. Zwitterion-like, charge-balanced ultrathin layers on polymeric membranes for antifouling property. Environ Sci Technol. 2018;52(7):4457–4463.
  • Tai FI, Sterner O, Andersson O, et al. Interaction forces on polyampholytic hydrogel gradient surfaces. ACS Omega. 2019;4(3):5670–5681.
  • Shelef Y, Bar-On B. Interfacial indentations in biological composites. J Mech Behav Biomed Mater. 2021;114:104209.
  • Jurak M, Wiącek AE, Ładniak A, et al. What affects the biocompatibility of polymers? Adv Colloid Interface Sci. 2021;294:102451.
  • Han X, Leng C, Shao Q, et al. Absolute orientations of water molecules at zwitterionic polymer interfaces and interfacial dynamics after salt exposure. Langmuir. 2019;35(5):1327–1334.
  • Chen SH, Chang Y, Lee KR, et al. Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization. Langmuir. 2012;28(51):17733–17742.
  • Holmlin RE, Chen X, Chapman RG, et al. Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir. 2001;17(9):2841–2850.
  • Hoffman AS. The early days of PEG and PEGylation (1970s-1990s). Acta Biomater. 2016;40:1–5.
  • Del Grosso CA, Leng C, Zhang K, et al. Surface hydration for antifouling and bio-adhesion. Chem Sci. 2020;11(38):10367–10377.
  • Xing CM, Meng FN, Quan M, et al. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Acta Biomater. 2017;59:129–138.
  • Hildebrandt C, Joos L, Saedler R, et al. The “new polyethylene glycol dilemma”: polyethylene glycol impurities and their paradox role in mAb crystallization. J Pharm Sci. 2015;104(6):1938–1945.
  • Hecht ES, Yeh GK, Zhang K. Evidence of free radical generation from the interaction of polyethylene glycol with PVC medical tubing. J Pharm Biomed Anal. 2021;197:113955.
  • Yao Y, Fukazawa K, Huang N, et al. Effects of 3, 4-dihydrophenyl groups in water-soluble phospholipid polymer on stable surface modification of titanium alloy. Colloid Surf B: Biointerfaces. 2011;88(1):215–220.
  • Asha AB, Chen Y, Zhang H, et al. Rapid mussel-inspired surface zwitteration for enhanced antifouling and antibacterial properties. Langmuir. 2019;35(5):1621–1630.
  • Kumar A, Nayak K, Münch AS, et al. Mussel primed grafted zwitterionic phosphorylcholine based superhydrophilic/underwater superoleophobic antifouling membranes for oil-water separation. Sep Purif Tech. 2022;290:120887.
  • Pranantyo D, Xu LQ, Neoh KG, et al. Tea stains-inspired initiator primer for surface grafting of antifouling and antimicrobial polymer brush coatings. Biomacromolecules. 2015;16(3):723–732.
  • Asha AB, Chen Y, Narain R. Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering. Chem Soc Rev. 2021;50(20):11668–11683.
  • Saiz-Poseu J, Mancebo-Aracil J, Nador F, et al. The chemistry behind catechol-based adhesion. Angew Chem Int Ed Engl. 2019;58(3):696–714.
  • Shin CM, Cho S, Kim DH, et al. Zwitterionic polydopamine coatings suppress silicone implant-induced capsule formation. Biomater Sci. 2021;9(9):3425–3432.
  • Golabchi A, Wu B, Cao B, et al. Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. Biomaterials. 2019;225:119519.
  • Yao Y, Fukazawa K, Ma W, et al. Platelet adhesion-resistance of titanium substrate with mussel-inspired adhesive polymer bearing phosphorylcholine group. Appl Surf Sci. 2012;258(14):5418–5423.
  • Wang J, Zhu H, Chen G, et al. Controlled synthesis and self-assembly of dopamine-containing copolymer for honeycomb-like porous hybrid particles. Macromol Rapid Commun. 2014;35(11):1061–1067.
  • Kim JY, Lee BS, Choi J, et al. Cytocompatible polymer grafting from individual living cells by atom-transfer radical polymerization. Angew Chem Int Ed Engl. 2016;55(49):15306–15309.
  • Kristensen EM, Nederberg F, Rensmo H, et al. Photoelectron spectroscopy studies of the functionalization of a silicon surface with a phosphorylcholine-terminated polymer grafted onto (3-aminopropyl)trimethoxysilane. Langmuir. 2006;22(23):9651–9657.
  • Nishida M, Nakaji-Hirabayashi T, Kitano H, et al. Optimization of the composition of zwitterionic copolymers for the easy-construction of bio-inactive surfaces. J Biomed Mater Res A. 2016;104(8):2029–2036.
  • Xu Y, Takai M, Konno T, et al. Microfluidic flow control on charged phospholipid polymer interface. Lab Chip. 2007;7(2):199–206.
  • Kyomoto M, Moro T, Iwasaki Y, et al. Superlubricious surface mimicking articular cartilage by grafting poly(2-methacryloyloxyethyl phosphorylcholine) on orthopaedic metal bearings. J Biomed Mater Res A. 2009;91(3):730–741.
  • Lewis AL, Furze JD, Small S, et al. Long-term stability of a coronary stent coating post-implantation. J Biomed Mater Res. 2002;63(6):699–705.
  • Iqbal Z, Moses W, Kim S, et al. Sterilization effects on ultrathin film polymer coatings for silicon-based implantable medical devices. J Biomed Mater Res B Appl Biomater. 2018;106(6):2327–2336.
  • Yang CC, Lo CT, Luo YL, et al. Thermally stable bioinert zwitterionic sulfobetaine interfaces tolerated in the medical sterilization process. ACS Biomater Sci Eng. 2021;7(3):1031–1045.
  • Venault A, Lai MW, Jhong JF, et al. Superior bioinert capability of zwitterionic poly(4-vinylpyridine propylsulfobetaine) withstanding clinical sterilization for extended medical applications. ACS Appl Mater Interfaces. 2018;10(21):17771–17783.
  • Moro T, Takatori Y, Ishihara K, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater. 2004;3(11):829–836.
  • Kihara S, Yamazaki K, Litwak KN, et al. In vivo evaluation of a MPC polymer coated continuous flow left ventricular assist system. Artif Organs. 2003;27(2):188–192.
  • Kaneko T, Saito T, Shobuike T, et al. 2-Methacryloyloxyethyl phosphorylcholine polymer coating inhibits bacterial adhesion and biofilm formation on a suture: an in vitro and in vivo study. Biomed Res Int. 2020;2020:5639651.
  • Nishida K, Sakakida M, Ichinose K, et al. Development of a ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible membrane, 2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate. Med Prog Technol. 1995;21(2):91–103.
  • Iida Y, Hongo K, Onoda T, et al. Use of catheter with 2-methacryloyloxyethyl phosphorylcholine polymer coating is associated with long-term availability of central venous port. Sci Rep. 2021;11(1):5385.
  • Pappalardo F, Della Valle P, Crescenzi G, et al. Phosphorylcholine coating may limit thrombin formation during high-risk cardiac surgery: a randomized controlled trial. Ann Thorac Surg. 2006;81(3):886–891.
  • Lewis AL, Stratford PW. A review on phosphorylcholine-coated stents. J Long Term Eff Med Implants. 2017;27(2–4):233–252.
  • Abizaid A, Lansky AJ, Fitzgerald PJ, et al. Percutaneous coronary revascularization using a trilayer metal phosphorylcholine-coated zotarolimus-eluting stent. Am J Cardiol. 2007;99(10):1403–1408.
  • Pasarikovski CR, Waggass G, Cardinell J, et al. Pipeline embolisation device with shield technology for the treatment of ruptured intracranial aneurysm. Neuroradiol J. 2019;32(3):189–192.
  • Lemp MA, Caffery B, Lebow K, et al. Omafilcon a (Proclear) soft contact lenses in a dry eye population. Clao J. 1999;25(1):40–47.
  • Shi X, Sharma V, Cantu-Crouch D, et al. Nanoscaled morphology and mechanical properties of a biomimetic polymer surface on a silicone hydrogel contact lens. Langmuir. 2021;37(47):13961–13967.
  • Chou YN, Wen TC, Chang Y. Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces. Acta Biomater. 2016;40:78–91.
  • Wang R, Xia J, Tang J, et al. Surface modification of intraocular lens with hydrophilic poly(sulfobetaine methacrylate) brush for posterior capsular opacification prevention. J Ocul Pharmacol Ther. 2021;37(3):172–180.
  • Lin X, Wu K, Zhou Q, et al. Photoreactive carboxybetaine copolymers impart biocompatibility and inhibit plasticizer leaching on polyvinyl chloride. ACS Appl Mater Interfaces. 2020;12(37):41026–41037.
  • Venault A, Ye CC, Lin YC, et al. Zwitterionic fibrous polypropylene assembled with amphiphatic carboxybetaine copolymers for hemocompatible blood filtration. Acta Biomater. 2016;40:130–141.
  • McKavanagh P, Zawadowski G, Ahmed N, et al. The evolution of coronary stents. Expert Rev Cardiovasc Ther. 2018;16(3):219–228.
  • Zheng H, Barragan P, Corcos T, et al. Clinical experience with a new biocompatible phosphorylcholine-coated coronary stent. J Invasive Cardiol. 1999;11(10):608–614.
  • Shinozaki N, Yokoi H, Iwabuchi M, et al. Initial and follow-up results of the BiodivYsio phosphorylcholine coated stent for treatment of coronary artery disease. Circ J. 2005;69(3):295–300.
  • Wang JH, Bartlett JD, Dunn AC, et al. The use of rhodamine 6G and fluorescence microscopy in the evaluation of phospholipid-based polymeric biomaterials. J Microsc. 2005;217(3):216–224.
  • Girdhar G, Andersen A, Pangerl E, et al. Thrombogenicity assessment of pipeline flex, pipeline shield, and FRED flow diverters in an in vitro human blood physiological flow loop model. J Biomed Mater Res A. 2018;106(12):3195–3202.
  • Whelan DM, van der Giessen, WJ, Krabbendam SC, et al. Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries. Heart. 2000;83(3):338–345.
  • Kandzari DE. Development and performance of the zotarolimus-eluting endeavor coronary stent. Expert Rev Med Devices. 2010;7(4):449–459.
  • Lewis AL, Willis SL, Small SA, et al. Drug loading and elution from a phosphorylcholine polymer-coated coronary stent does not affect long-term stability of the coating in vivo. Biomed Mater Eng. 2004;14(4):355–370.
  • Collingwood R, Gibson L, Sedlik S, et al. Stent-Based delivery of ABT-578 via a phosphorylcholine surface coating reduces neointimal formation in the porcine coronary model. Catheter Cardiovasc Interv. 2005;65(2):227–232.
  • Boffito M, Sartori S, Mattu C, et al. Polyurethanes for cardiac applications. In: Cooper SL, and Guan J, editors. Advances in polyurethane biomaterials. Duxford, UK: Woodhead Publishing; 2016. p. 387–416.
  • Yang M, Zhang Z, Hahn C, et al. Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles. J Biomed Mater Res. 1999;48(1):13–23.
  • Kim S, Ye SH, Adamo A, et al. A biostable, anti-fouling zwitterionic polyurethane-urea based on PDMS for use in blood-contacting medical devices. J Mater Chem B. 2020;8(36):8305–8314.
  • Chang Y, Chen S, Yu Q, et al. Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromolecules. 2007;8(1):122–127.
  • Yuan J, Zhang J, Zhou J, et al. Platelet adhesion onto segmented polyurethane surfaces modified by carboxybetaine. J Biomater Sci Polym Ed. 2003;14(12):1339–1349.
  • Liu Y, Inoue Y, Mahara A, et al. Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer. J Biomater Sci Polym Ed. 2014;25(14–15):1514–1529.
  • Asanuma Y, Inoue Y, Yusa S, et al. Hybridization of poly(2-methacryloyloxyethyl phosphorylcholine-block-2-ethylhexyl methacrylate) with segmented polyurethane for reducing thrombogenicity. Colloids Surf B Biointerfaces. 2013;108:239–245.
  • Snyder TA, Tsukui H, Kihara S, et al. Preclinical biocompatibility assessment of the EVAHEART ventricular assist device: coating comparison and platelet activation. J Biomed Mater Res A. 2007;81(1):85–92.
  • Ushijima T, Tanoue Y, Hirayama K, et al. A case of conversion of a NIPRO ventricular assist system to an EVAHEART left ventricular assist system. J Artif Organs. 2013;16(2):248–252.
  • Owen CM, Montemurro N, Lawton MT. Microsurgical management of residual and recurrent aneurysms after coiling and clipping: an experience with 97 patients. Neurosurgery. 2015;62(Suppl 1):92–102.
  • Briganti F, Leone G, Marseglia M, et al. Endovascular treatment of cerebral aneurysms using flow-diverter devices: a systematic review. Neuroradiol J. 2015;28(4):365–375.
  • Caroff J, Tamura T, King RM, et al. Phosphorylcholine surface modified flow diverter associated with reduced intimal hyperplasia. J Neurointerv Surg. 2018;10(11):1097–1101.
  • Marosfoi M, Clarencon F, Langan ET, et al. Acute thrombus formation on phosphorilcholine surface modified flow diverters. J Neurointerv Surg. 2018;10(4):406–411.
  • Matsuda Y, Jang DK, Chung J, et al. Preliminary outcomes of single antiplatelet therapy for surface-modified flow diverters in an animal model: analysis of neointimal development and thrombus formation using OCT. J Neurointerv Surg. 2019;11(1):74–79.
  • Yeomans J, Sandu L, Sastry A. Pipeline flex embolisation device with shield technology for the treatment of patients with intracranial aneurysms: periprocedural and 6 month outcomes. Neuroradiol J. 2020;33(6):471–478.
  • Martínez-Galdámez M, Lamin SM, Lagios KG, et al. Treatment of intracranial aneurysms using the pipeline flex embolization device with shield technology: angiographic and safety outcomes at 1-year follow-up. J Neurointerv Surg. 2019;11(4):396–399.
  • Ronco C. Evolution of technology for continuous renal replacement therapy: forty years of improvement. Contrib Nephrol. 2018;194:1–14.
  • Roumelioti ME, Trietley G, Nolin TD, et al. Beta-2 microglobulin clearance in high-flux dialysis and convective dialysis modalities: a meta-analysis of published studies. Nephrol Dial Transplant. 2018;33(6):1025–1039.
  • Zawada AM, Melchior P, Erlenkötter A, et al. Polyvinylpyrrolidone in hemodialysis membranes: impact on platelet loss during hemodialysis. Hemodial Int. 2021;25(4):498–506.
  • Sato Y, Horiuchi H, Fukasawa S, et al. Influences of the priming procedure and saline circulation conditions on polyvinylpyrrolidone in vitro elution from polysulfone membrane dialyzers. Biochem Biophys Rep. 2021;28:101140.
  • Iwasaki Y, Nakabayashi N, Ishihara K. In vitro and ex vivo blood compatibility study of 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer-coated hemodialysis hollow fibers. J Artif Organs. 2003;6(4):260–266.
  • Li D, Gao C, Wang X, et al. Zwitterionic polysulfone copolymer/polysulfone blended ultrafiltration membranes with excellent thermostability and antifouling properties. Membranes (Basel). 2021;11(12):932.
  • Xiang T, Lu T, Xie Y, et al. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry. Acta Biomater. 2016;40:162–171.
  • Mollahosseini A, Abdelrasoul A. Zwitterionization of common hemodialysis membranes: assessment of different immobilized structure impact on hydrophilicity and biocompatibility of poly aryl ether sulfone (PAES) and cellulose triacetate (CTA) hemodialysis membranes. Struct Chem. 2022. DOI:10.1007/s11224-022-01940-0
  • Chang Y, Chang WJ, Shih YJ, et al. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Appl Mater Interfaces. 2011;3(4):1228–1237.
  • Li Q, Lin HH, Wang XL. Preparation of sulfobetaine-grafted PVDF hollow fiber membranes with a stably anti-protein-fouling performance. Membranes (Basel). 2014;4(2):181–199.
  • Xiang T, Zhang LS, Wang R, et al. Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP. J Colloid Interface Sci. 2014;432:47–56.
  • Ueda H, Watanabe J, Konno T, et al. Asymmetrically functional surface properties on biocompatible phospholipid polymer membrane for bioartificial kidney. J Biomed Mater Res A. 2006;77(1):19–27.
  • Seo J, Seo JH. Fabrication of an anti-biofouling plasma-filtration membrane by an electrospinning process using photo-cross-linkable zwitterionic phospholipid polymers. ACS Appl Mater Interfaces. 2017;9(23):19591–19600.
  • Lien C-C, Chen P-J, Venault A, et al. A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion. J Membrane Sci. 2019;584:148–160.
  • Akil A, Ziegeler S, Rehers S, et al. Blood purification therapy in patients with severe COVID-19 requiring veno-venous ECMO therapy: a retrospective study. Int J Artif Organs. 2022;45(7):615–622.
  • Abada EN, Feinberg BJ, Roy S. Evaluation of silicon membranes for extracorporeal membrane oxygenation (ECMO). Biomed Microdevices. 2018;20(4):86.
  • Mousavi M, Ghaleh H, Jalili K, et al. Multi-layer PDMS films having antifouling property for biomedical applications. J Biomater Sci Polym Ed. 2021;32(5):678–693.
  • Biran R, Pond D. Heparin coatings for improving blood compatibility of medical devices. Adv Drug Deliv Rev. 2017;112:12–23.
  • Keuren JF, Wielders SJ, Willems GM, et al. Fibrinogen adsorption, platelet adhesion and thrombin generation at heparinized surfaces exposed to flowing blood. Thromb Haemost. 2002;87(4):742–747.
  • Campbell EJ, O’Byrne V, Stratford PW, et al. Biocompatible surfaces using methacryloylphosphorylcholine laurylmethacrylate copolymer. Asaio J. 1994;40(3):M853–857.
  • Katayama R, Tanaka N, Takagi Y, et al. Characterization of the hydration process of phospholipid-mimetic polymers using air-injection-mediated liquid exclusion methods. Langmuir. 2020;36(20):5626–5632.
  • Myers GJ, Johnstone DR, Swyer WJ, et al. Evaluation of mimesys phosphorylcholine (PC)-coated oxygenators during cardiopulmonary bypass in adults. J Extra Corpor Technol. 2003;35(1):6–12.
  • Erythropel HC, Maric M, Nicell JA, et al. Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure. Appl Microbiol Biotechnol. 2014;98(24):9967–9981.
  • Münch F, Höllerer C, Klapproth A, et al. Effect of phospholipid coating on the migration of plasticizers from PVC tubes. Chemosphere. 2018;202:742–749.
  • Ding YF, Li RW, Nakai M, et al. Osteoanabolic implant materials for orthopedic treatment. Adv Healthc Mater. 2016;5(14):1740–1752.
  • Jaafar A, Hecker C, Árki P, et al. Sol-gel derived hydroxyapatite coatings for titanium implants: a review. Bioengineering (Basel). 2020;7(4):127.
  • Holt G, Murnaghan C, Reilly J, et al. The biology of aseptic osteolysis. Clin Orthop Relat Res. 2007;460:240–252.
  • Ingham E, Fisher J. Biological reactions to wear debris in total joint replacement. Proc Inst Mech Eng H. 2000;214(1):21–37.
  • Stannard JP, Harris HW, Volgas DA, et al. Functional outcome of patients with femoral head fractures associated with hip dislocations. Clin Orthop Relat Res. 2000;377:44–56.
  • Affatato S, Freccero N, Taddei P. The biomaterials challenge: a comparison of polyethylene wear using a hip joint simulator. J Mech Behav Biomed Mater. 2016;53:40–48.
  • Endo MM, Barbour PS, Barton DC, et al. Comparative wear and wear debris under three different counterface conditions of crosslinked and non-crosslinked ultra high molecular weight polyethylene. Biomed Mater Eng. 2001;11(1):23–35.
  • Kurtz SM, Gawel HA, Patel JD. History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res. 2011;469(8):2262–2277.
  • Lin W, Klein J. Recent progress in cartilage lubrication. Adv Mater. 2021;33(18):e2005513.
  • Kyomoto M, Moro T, Miyaji F, et al. Effect of 2-methacryloyloxyethyl phosphorylcholine concentration on photo-induced graft polymerization of polyethylene in reducing the wear of orthopaedic bearing surface. J Biomed Mater Res A. 2008;86(2):439–447.
  • Moro T, Takatori Y, Tanaka S, et al. Clinical safety and wear resistance of the phospholipid polymer-grafted highly cross-linked polyethylene liner. J Orthop Res. 2017;35(9):2007–2016.
  • Kyomoto M, Moro T, Yamane S, et al. Hydrated phospholipid polymer gel-like layer for increased durability of orthopedic bearing surfaces. Langmuir. 2019;35(5):1954–1963.
  • Milner PE, Parkes M, Puetzer JL, et al. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomater. 2018;65:102–111.
  • Deng Y, Xiong D, Shao S. Study on biotribological properties of UHMWPE grafted with MPDSAH. Mater Sci Eng C Mater Biol Appl. 2013;33(3):1339–1343.
  • Klein C, Iacovella CR, McCabe C, et al. Tunable transition from hydration to monomer-supported lubrication in zwitterionic monolayers revealed by molecular dynamics simulation. Soft Matter. 2015;11(17):3340–3346.
  • Deng Y, Xiong D, Wang K. The mechanical properties of the ultra high molecular weight polyethylene grafted with 3-dimethy (3-(N-methacryamido)propyl) ammonium propane sulfonate. J Mech Behav Biomed Mater. 2014;35:18–26.
  • Adibnia V, Olszewski M, De Crescenzo G, et al. Superlubricity of zwitterionic bottlebrush polymers in the presence of multivalent ions. J Am Chem Soc. 2020;142(35):14843–14847.
  • Kyomoto M, Moro T, Saiga K, et al. Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials. Biomaterials. 2012;33(18):4451–4459.
  • Xi Y, Sharma PK, Kaper HJ, et al. Tribological properties of micropored poly(2-hydroxyethyl methacrylate) hydrogels in a biomimetic aqueous environment. ACS Appl Mater Interfaces. 2021;13(35):41473–41484.
  • Ishihara K, Iwasaki Y, Ebihara S, et al. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids Surf B Biointerfaces. 2000;18(3–4):325–335.
  • Goda T, Konno T, Takai M, et al. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials. 2006;27(30):5151–5160.
  • Goda T, Matsuno R, Konno T, et al. Photografting of 2-methacryloyloxyethyl phosphorylcholine from polydimethylsiloxane: tunable protein repellency and lubrication property. Colloids Surf B Biointerfaces. 2008;63(1):64–72.
  • Goda T, Konno T, Takai M, et al. Photoinduced phospholipid polymer grafting on parylene film: advanced lubrication and antibiofouling properties. Colloids Surf B Biointerfaces. 2007;54(1):67–73.
  • Taki N, Tatro JM, Nalepka JL, et al. Polyethylene and titanium particles induce osteolysis by similar, lymphocyte-independent, mechanisms. J Orthop Res. 2005;23(2):376–383.
  • Moro T, Takatori Y, Kyomoto M, et al. Long-term hip simulator testing of the artificial hip joint bearing surface grafted with biocompatible phospholipid polymer. J Orthop Res. 2014;32(3):369–376.
  • Pawlak Z, Yusuf KQ, Pai R, et al. Repulsive surfaces and lamellar lubrication of synovial joints. Arch Biochem Biophys. 2017;623-624:42–48.
  • Kyomoto M, Moro T, Yamane S, et al. A phospholipid polymer graft layer affords high resistance for wear and oxidation under load bearing conditions. J Mech Behav Biomed Mater. 2018;79:203–212.
  • Nakano H, Noguchi Y, Kakinoki S, et al. Highly durable lubricity of photo-cross-linked zwitterionic polymer brushes supported by poly(ether ether ketone) substrate. ACS Appl Bio Mater. 2020;3(2):1071–1078.
  • Chen H, Sun T, Yan Y, et al. Cartilage matrix-inspired biomimetic superlubricated nanospheres for treatment of osteoarthritis. Biomaterials. 2020;242:119931.
  • Yue Q, Lei L, Gu Y, et al. Bioinspired polysaccharide-derived zwitterionic brush-like copolymer as an injectable biolubricant for arthritis treatment. Adv Healthc Mater. 2022;11(13):2200090.
  • Zhao W, Wang H, Han Y, et al. Dopamine/phosphorylcholine copolymer as an efficient joint lubricant and ROS scavenger for the treatment of osteoarthritis. ACS Appl Mater Interfaces. 2020;12(46):51236–51248.
  • Zheng Y, Yang J, Liang J, et al. Bioinspired hyaluronic acid/phosphorylcholine polymer with enhanced lubrication and anti-inflammation. Biomacromolecules. 2019;20(11):4135–4142.
  • Osaheni AO, Mather PT, Blum MM. Mechanics and tribology of a zwitterionic polymer blend: impact of molecular weight. Mater Sci Eng C Mater Biol Appl. 2020;111:110736.
  • Werner L. Biocompatibility of intraocular lens materials. Curr Opin Ophthalmol. 2008;19(1):41–49.
  • Okajima Y, Saika S, Sawa M. Effect of surface coating an acrylic intraocular lens with poly(2-methacryloyloxyethyl phosphorylcholine) polymer on lens epithelial cell line behavior. J Cataract Refract Surg. 2006;32(4):666–671.
  • Musgrave CSA, Fang F. Contact lens materials: a materials science perspective. Materials (Basel). 2019;12(2):261.
  • Nicolson PC. Continuous wear contact lens surface chemistry and wearability. Eye Contact Lens. 2003;29(1 Suppl):S30–32.
  • Court JL, Redman RP, Wang JH, et al. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials. 2001;22(24):3261–3272.
  • Guillon M. Are silicone hydrogel contact lenses more comfortable than hydrogel contact lenses? Eye Contact Lens. 2013;39(1):86–92.
  • Jacob JT. Biocompatibility in the development of silicone-hydrogel lenses. Eye Contact Lens. 2013;39(1):13–19.
  • Tighe BJ. A decade of silicone hydrogel development: surface properties, mechanical properties, and ocular compatibility. Eye Contact Lens. 2013;39(1):4–12.
  • Young M, Benjamin WJ. Calibrated oxygen permeability of 35 conventional hydrogel materials and correlation with water content. Eye Contact Lens. 2003;29(2):126–133.
  • Chien HW, Kuo CJ. Preparation, material properties and antimicrobial efficacy of silicone hydrogel by modulating silicone and hydrophilic monomer. J Biomater Sci Polym Ed. 2019;30(12):1050–1067.
  • Rex J, Knowles T, Zhao X, et al. Elemental composition at silicone hydrogel contact lens surfaces. Eye Contact Lens. 2018;44(2):S221–S226.
  • Gipson IK, Argüeso P. Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol. 2003;231:1–49.
  • Rickert CA, Wittmann B, Fromme R, et al. Highly transparent covalent mucin coatings improve the wettability and tribology of hydrophobic contact lenses. ACS Appl Mater Interfaces. 2020;12(25):28024–28033.
  • Korogiannaki M, Samsom M, Matheson A, et al. Investigating the synergistic interactions of surface immobilized and free natural ocular lubricants for contact lens applications: a comparative study between hyaluronic acid and proteoglycan 4 (Lubricin). Langmuir. 2021;37(3):1062–1072.
  • Shi X, Cantu-Crouch D, Sharma V, et al. Surface characterization of a silicone hydrogel contact lens having bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer layer in hydrated state. Colloids Surf B Biointerfaces. 2021;199:111539.
  • Papas E, Ishihara K, Mack C, et al. Water gradient technology: evolution through biomimicry. Contact Lens Spectrum. 2021;36:16–20.
  • Ishihara K, Fukazawa K, Sharma V, et al. Antifouling silicone hydrogel contact lenses with a bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer surface. ACS Omega. 2021;6(10):7058–7067.
  • Higaki Y, Nishida J, Takenaka A, et al. Versatile inhibition of marine organism settlement by zwitterionic polymer brushes. Polym J. 2015;47(12):811–818.
  • Qiu H, Feng K, Gapeeva A, et al. Functional polymer materials for modern marine biofouling control. Prog Polym Sci. 2022;127:101516.
  • He K, Duan H, Chen GY, et al. Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings: overcoming the imperative challenge of oil-water separation membranes. ACS Nano. 2015;9(9):9188–9198.
  • Chen S, Xie Y, Chinnappan A, et al. A self-cleaning zwitterionic nanofibrous membrane for highly efficient oil-in-water separation. Sci Total Environ. 2020;729:138876.
  • Qi L, Jiang T, Liang R, et al. Enhancing the oil-fouling resistance of polymeric membrane ion-selective electrodes by surface modification of a zwitterionic polymer-based oleophobic self-cleaning coating. Anal Chem. 2021;93(18):6932–6937.
  • Zhao J, Li D, Han H, et al. Hyperbranched zwitterionic polymer-functionalized underwater superoleophobic microfiltration membranes for oil-in-water emulsion separation. Langmuir. 2019;35(7):2630–2638.
  • Baig N, Arshad Z, Ali SA. Synthesis of a biomimetic zwitterionic pentapolymer to fabricate high-performance PVDF membranes for efficient separation of oil-in-water nano-emulsions. Sci Rep. 2022;12(1):5028.
  • Jones SD, Nguyen H, Richardson PM, et al. Design of polymeric zwitterionic solid electrolytes with superionic lithium transport. ACS Cent Sci. 2022;8(2):169–175.
  • Liu Y, Sheri M, Cole MD, et al. Combining fullerenes and zwitterions in non-conjugated polymer interlayers to raise solar cell efficiency. Angew Chem Int Ed Engl. 2018;57(31):9675–9678.