1,630
Views
3
CrossRef citations to date
0
Altmetric
Focus on Composite Materials for Functional Electronic Devices

Interfacial and confined molecular-assembly of poly(3-hexylthiophene) and its application in organic electronic devices

, ORCID Icon & ORCID Icon
Pages 619-632 | Received 18 Jun 2022, Accepted 13 Sep 2022, Published online: 27 Sep 2022

References

  • Zhang C, Qiao Y, Xiong P, et al. Conjugated microporous polymers with tunable electronic structure for high-performance potassium-ion batteries. ACS Nano. 2019;13(1):745–754.
  • Holliday S, Ashraf RS, Wadsworth A, et al. High-Efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat Commun. 2016;7(1):11585–11595.
  • Dang MT, Hirsch L, Wantz G. P3HT:PCBM. Best Seller Polym Photovoltaic Res. 2011;23(31):3597–3602.
  • Cook S, Furube A, Katoh R. Analysis of the excited states of regioregular polythiophene P3HT. Energy Environ Sci. 2008;1(2):294–299.
  • Ahn S-K, Carrillo JM-Y, Keum JK, et al. Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold. Nanoscale. 2017;9(21):7071–7080.
  • Liu S, Kang L, Henzie J, et al. Recent advances and perspectives of battery-type anode materials for potassium ion storage. ACS Nano. 2021;15(12):18931–18973.
  • Chen L, Honsho Y, Seki S, et al. Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. J Am Chem Soc. 2010;132(19):6742–6748.
  • Jiang J-X, Trewin A, Adams DJ, et al. Band gap engineering in fluorescent conjugated microporous polymers. Chem Sci. 2011;2(9):1777–1781.
  • Scheuble M, Goll M, Ludwigs S. Branched terthiophenes in organic electronics: from small molecules to polymers. 2015;36(2):115–137. doi:10.1002/marc.201400525
  • Jarosz T, Lapkowski M, Ledwon P. Advances in star-shaped π-conjugated systems: properties and applications. Macromol Rapid Commun. 2014;35(11):1006–1032.
  • Handa NV, Serrano AV, Robb MJ, et al. Exploring the synthesis and impact of end-functional poly(3-hexylthiophene). J Polym Sci A Polym Chem. 2015;53(7):831–841.
  • Bhatt MP, Magurudeniya HD, Rainbolt EA, et al. Poly(3-hexylthiophene) nanostructured materials for organic electronics applications. J Nanosci Nanotechnol. 2014;14(2):1033–1050.
  • Buono A, Son NH, Raos G, et al. Poly(3-butylthiophene): crystal structure and preferred orientation in spherulitic thin films. Macromolecules. 2010;43(16):6772–6781.
  • Kayunkid N, Uttiya S, Brinkmann M. Structural model of regioregular poly(3-hexylthiophene) obtained by electron diffraction analysis. Macromolecules. 2010;43(11):4961–4967.
  • Zeng X, Zhang S, Zheng N, et al. Diversified Α-phase nanostructure of isotactic polypropylene under cylindrical confinement via cross diffraction analysis. Polymer. 2019;179:121647–121653.
  • Liang Z, Zheng N, Ni B, et al. Coherent crystal branches: the impact of tetragonal symmetry on the 2D confined polymer nanostructure. IUCrJ. 2021;8(2):215–224.
  • Sohail M, Huang J, Lai Z, et al. Synthesis of flower-like Co9S8/reduced graphene oxide nanocomposites and their photocatalytic performance. J Inorg Organomet Polym Mater. 2020;30(12):5168–5179.
  • Zhang W, Cao Y, Lai Z, et al. Hierarchical structure with an unusual honeycomb fullerene scaffold by a fullerene–triphenylene shape amphiphile. Macromolecules. 2020;53(14):6056–6062.
  • Wang KC, Lai ZW, Huang JM, et al. Dual effects of interfacial interaction and geometric constraints on structural formation of Poly(Butylene Terephthalate) nanorods. Chin J Polym Sci. 2022;40(6):700–708.
  • Lai ZW, Zheng N, Liang ZY, et al. Structural ensemble of molecular chains in isotactic polypropylene under cylindrical confinement. Macromolecules. 2021;54(5):2325–2333.
  • Yang C-E, Woo EM, Nagarajan S. Epicycloid extinction-band assembly in Poly(Decamethylene Terephthalate) confined in thin films and crystallized at high temperatures. Polymer. 2021;212:123256–123270.
  • Villada-Gil S, Palacio-Betancur V, Armas-Perez JC, et al. Directing the far-from-equilibrium assembly of nanoparticles in confined liquid crystals by hydrodynamic fields. Soft Matter. 2021;17(12):3463–3472.
  • Hu S, Nozawa J, Kang K, et al. Structural transformations of growing thin colloidal crystals in confined space via convective assembly. J Colloid Interface Sci. 2021;591:300–306.
  • Pitet LM, Chamberlain BM, Hauser AW, et al. Dispersity and architecture driven self-assembly and confined crystallization of symmetric branched block copolymers. Polym Chem. 2019;10(39):5385–5395.
  • Chen Y, Huang S, Wang T, et al. Confined self-assembly enables stabilization and patterning of nanostructures in liquid-crystalline block copolymers. Macromolecules. 2019;52(4):1892–1898.
  • Heo K, Miesch C, Na JH, et al. Assembly of P3HT/Cdse nanowire networks in an insulating polymer host. Soft Matter. 2018;14(25):5327–5332.
  • Istif E, Kagkoura A, Hernandez-Ferrer J, et al. Self-assembled core-shell CdTe/poly(3-hexylthiophene) nanoensembles as novel donor-acceptor light-harvesting Systems. ACS Appl Mater Interfaces. 2017;9(51):44695–44703.
  • Uto K, Yamamoto K, Kishimoto N, et al. Characterization of stable, electroactive protein cage/synthetic polymer multilayer thin films prepared by layer-by-layer assembly. J Nanopart Res. 2013;15(4):1516–1526.
  • Kim DH, Han JT, Park YD, et al. Single-crystal polythiophene microwires grown by self-assembly. Adv Mater. 2006;18(6):719–723.
  • Makamba H, Hsieh YY, Sung WC, et al. Stable permanently hydrophilic protein-resistant thin-film coatings on Poly(dimethylsiloxane) substrates by electrostatic self-assembly and chemical cross-linking. Anal Chem. 2005;77(13):3971–3978.
  • Rahimi K, Botiz I, Stingelin N, et al. Controllable processes for generating large single crystals of poly(3-hexylthiophene). Angew Chem Int Ed Engl. 2012;51(44):11131–11135.
  • Martín J, Campoy-Quiles M, Nogales A, et al. Poly(3-hexylthiophene) nanowires in porous alumina: internal structure under confinement. Soft Matter. 2014;10(18):3335–3346.
  • Shen C, Chai S, Zou S, et al. Crystallization of poly(3-hexylthiophene) on graphitic surfaces with different curvatures. Polymer. 2018;144:168–178.
  • Ye Z, Xiubao Y, Cui H, et al. Nanowires with unusual packing of poly(3-hexylthiophene)s induced by electric fields. J Mater Chem C. 2014;2(33):6773–6780.
  • Zhai L, Khondaker SI, Thomas J, et al. Ordered conjugated polymer nano- and microstructures: structure control for improved performance of organic electronics. Nano Today. 2014;9(6):705–721.
  • Shin H, Lee H, Kim B, et al. Effects of blended poly(3-hexylthiophene) and 6,13-bis(triisopropylsilylethynyl) pentacene organic semiconductors on the photoresponse characteristics of thin-film transistors. Korean J Met Mater. 2022;60(3):198–205.
  • Ruffino R, Fichera L, Valenti A, et al. Tuning the randomization of lamellar orientation in poly (3-hexylthiophene) thin films with substrate nano-curvature. Polymer. 2021;230:124071–124079.
  • Shin H, Park J, Choi JS. Illumination effect on electrical characteristics of poly(3-hexylthiophene): TIPS-pentacene blend thin-film transistor. J Nanosci Nanotechnol. 2021;21(7):3829–3834.
  • Higashihara T, Fukuta S, Ochiai Y, et al. synthesis and deformable hierarchical nanostructure of intrinsically stretchable ABA triblock copolymer composed of poly(3-hexylthiophene) and polyisobutylene segments. Acs Appl Polym Mater. 2019;1(3):315–320.
  • Shinohara T, Higaki Y, Hoshino T, et al. “Buried” nano-structure and molecular aggregation state in ordered heterojunction poly(3-hexylthiophene)-based photovoltaics. Jpn J Appl Phys. 2014;53(5):05FH09.
  • Liu K, Yang Q, Tang Y, et al. Effects of solvent boiling-point on chain structure and molecular orientation in poly(3-hexylthiophene)thin film. J Funct Polym. 2019;32(2):192–198,218.
  • Agbolaghi S. Optical/thermal studies on nanostructures of poly(3-hexylthiophene) and carbon nanotube/graphene precursors. Fuller Nanotub Car Nanostruct. 2019;27(7):572–581.
  • Hosseinzadeh N, Agbolaghi S, Abbaspoor S, et al. A delicate maneuver on conjugated rod-rod structures composed of poly(3-hexylthiophene) and polyaniline subtending patched-fibrillar, ringed-fibrillar, double-fibrillar and sandwiched configurations. J Polym Res. 2018;25(8):189–200.
  • Hase H, O’Neill K, Frisch J, et al. Unraveling the microstructure of molecularly doped poly(3-hexylthiophene) by thermally induced dedoping. J Phys Chem C. 2018;122(45):25893–25899.
  • Abbaspoor S, Agbolaghi S, Mahmoudi M, et al. Supramolecular donor-acceptor structures via orienting predeveloped fibrillar poly(3-hexylthiophene) crystals on bared/functionalized/grafted reduced graphene oxide with novel thiophenic constituents. Organic Electron. 2018;52:243–256.
  • Xiang WZ, Sun XL, Ren ZJ, et al. Diameter and thermal treatment dependent structure and optical properties of poly(3-hexylthiophene) nanotubes. J Mater Chem C. 2017;5(32):8315–8322.
  • Matsumoto T, Nishi K, Tamba S, et al. Molecular weight effect on surface and bulk structure of poly(3-hexylthiophene) thin films. Polymer. 2017;119:76–82.
  • Koch FPV, Rivnay J, Foster S, et al. The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors poly(3-hexylthiophene), a model study. Progress Polym Sci. 2013;38(12):1978–1989.
  • Xie WY, Sun YY, Zhang SB, et al. Structure and sources of disorder in poly(3-hexylthiophene) crystals investigated by density functional calculations with Van Der Waals interactions. Phys Rev B. 2011;83(18):184117–184122.
  • Cheval N, Kampars V, Fowkes C, et al. Assembl y of poly-3-hexylthiophene nano-crystallites into low dimensional structures using indandione derivatives. Nanomaterials. 2013;3(1):107–116.
  • Heinrich CD, Thelakkat M. Poly-(3-hexylthiophene) bottlebrush copolymers with tailored side-chain lengths and high charge carrier mobilities. J Mater Chem C. 2016;4(23):5370–5378.
  • Al-Harthi AM, Mahmoud WE. Influence of the fullerene acceptor derivative on the structure, molecular interaction and optoelectronic properties of poly(3-hexylthiophene) blend films: elucidating key factors. Opt Mater. 2022;124:112009–112019.
  • Dong WJ, Cho WS, Lee JL. Indium tin oxide branched nanowire and poly(3-hexylthiophene) hybrid structure for a photorechargeable supercapacitor. ACS Appl Mater Interfaces. 2021;13(19):22676–22683.
  • Wei RB, Gryszel M, Migliaccio L, et al. Tuning photoelectrochemical performance of poly(3-hexylthiophene) electrodes via surface structuring. J Mater Chem C. 2020;8(31):10897–10906.
  • Faria GC, Coutinho DJ, von Seggern H, et al. Doping mechanism in organic devices: effects of oxygen molecules in poly (3-hexylthiophene) thin films. Organic Electron. 2018;57:298–304.
  • Xu W, Han H Three-terminal artificial synapse device for realizing analog neural signals, has negative voltage electrical pulse which is configured to cause portion of anion to rapidly collect around poly 3-hexylthiophene (P3HT) ultra-thin Film. CN110277496-A.
  • Zenoozi S, Agbolaghi S, Poormahdi E, et al. Verification of scherrer formula for well-shaped poly(3-hexylthiophene)-based conductive single crystals and nanofibers and fabrication of photovoltaic devices from thin film coating. Macromol Res. 2017;25(8):826–840.
  • Ahn KS, Jo H, Kim JB, et al. Structural transition and interdigitation of alkyl side chains in the conjugated polymer poly(3-hexylthiophene) and their effects on the device performance of the associated organic field-effect transistor. ACS Appl Mater Interfaces. 2020;12(1):1142–1150.
  • Zhang R, Li B, Iovu MC, et al. Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. J Am Chem Soc. 2006;128(11):3480–3481.
  • Salleo A. Charge transport in polymeric transistors. Mater Today. 2007;10(3):38–45.
  • Couto R, Chambon S, Aymonier C, et al. Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly-(3-hexylthiophene) nanoparticles for OFET devices. Chem Comm. 2015;51(6):1008–1011.
  • Kang YH, Ko SJ, Lee MH, et al. Highly efficient and air stable thermoelectric devices of Poly (3-Hexylthiophene) by dual doping of Au metal precursors. Nano Energy. 2021;82:105681–105691.
  • Lan T, Gao ZJ, Barbosa MS, et al. Flexible ion-gated transistors making use of poly-3-hexylthiophene (P3HT): effect of the molecular weight on the effectiveness of gating and device performance. J Electron Mater. 2020;49(9):5302–5307.
  • Deng Y, Jiang J, Sun J, et al. Nanowire junction induced high threshold voltage in poly(3-hexylthiophene) mesoscale crystalline thin-film transistors with significantly enhanced mobility. Phys Status Solidi Rapid Res Lett. 2020;14(4):1900723–1900728.
  • Rawlings D, Thomas EM, Segalman RA, et al. Controlling the doping mechanism in poly(3-hexylthiophene) thin-film transistors with polymeric ionic liquid dielectrics. Chem Mater. 2019;31(21):8820–8829.
  • Park H, Ma BS, Kim J-S, et al. Regioregular-block-regiorandom poly(3-hexylthiophene) copolymers for mechanically robust and high-performance thin-film transistors. Macromolecules. 2019;52(20):7721–7730.
  • Luo J, Gao Y, Wang XY, et al. Double in-plane-gate IZO-based thin-film transistors with pea protein gate dielectrics. J Phys D Appl Phys. 2019;52(17):174001–174006.
  • Kim M, Ryu SU, Park SA, et al. Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv Funct Mater. 2019;30:1904545–1904569.
  • Hou S, Yu J. Self-stratified poly(3-Hexylthiophene)/Polystyrene (P3HT/PS) blends based organic thin-film transistor nitrogen dioxide gas sensors. Abstr Papers Am Chem Soc. 2019;257:10–15.
  • Yang J, Xie G, Su Y, et al. Flexible organic thin-film transistors based on poly(3-hexylthiophene) films for nitrogen dioxide detection. Sci China Technol Sci. 2018;61(11):1696–1704.
  • Miyane S, Wen H-F, Chen W-C, et al. Synthesis of block copolymers comprised of poly(3-hexylthiophene) segment with trisiloxane side chains and their application to organic thin film transistor. J Polym Sci Part A-Polym Chem. 2018;56(16):1787–1794.
  • Mansouri S, Coskun B, El Mir L, et al. Graphene oxide/poly(3-hexylthiophene) nanocomposite thin-film phototransistor for logic circuit applications. J Electron Mater. 2018;47(4):2461–2467.
  • Wang J-T, Takshima S, Wu H-C, et al. Stretchable conjugated rod coil poly(3-hexylthiophene)-block-Poly(butyl acrylate) thin films for field effect transistor applications. Macromolecules. 2017;50(4):1442–1452.
  • Mun S, Park Y, Lee Y-EK, et al. Highly sensitive ammonia gas sensor based on single-crystal poly(3-hexylthiophene) (P3HT) organic field effect transistor. Langmuir. 2017;33(47):13554–13560.
  • Xiao CY, Zhao GY, Zhang AD, et al. High performance polymer nanowire field-effect transistors with distinct molecular orientations. Adv Mater. 2015;27(34):4963–4968.
  • Smith BH, Clark MB, Kuang H, et al. Controlling polymorphism in poly(3-hexylthiophene) through addition of ferrocene for enhanced charge mobilities in thin-film transistors. Adv Funct Mater. 2015;25(4):542–551.
  • Tiwari S, Takashima W, Nagamatsu S, et al. A comparative study of spin coated and floating film transfer method coated poly (3-hexylthiophene)/poly (3-hexylthiophene)-nanofibers based field effect transistors. J Appl Phys. 2014;116(9):094306–094313.
  • Kline RJ, McGehee MD, Toney MF. Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat Mater. 2006;5(3):222–228.
  • Arif M, Liu JH, Zhai L, et al. Poly(3-hexylthiophene) crystalline nanoribbon network for organic field effect transistors. Appl Phys Lett. 2010;96(24):243304–243306.
  • Tian XY, Xu Z, Zhao SL, et al. Vacuum relaxation and annealing-induced enhancement of mobility of regioregular poly(3-hexylthiophene) field-effect transistors. Chin Phys B. 2009;18(11):5078–5083.
  • Lilliu S, Agostinelli T, Pires E, et al. Dynamics of crystallization and disorder during annealing of P3HT/PCBM bulk heterojunctions. Macromolecules. 2011;44(8):2725–2734.
  • Hamidi-Sakr A, Biniek L, Fall S, et al. Precise control of lamellar thickness in highly oriented regioregular poly(3-hexylthiophene) thin films prepared by high-temperature rubbing: correlations with optical properties and charge transport. Adv Funct Mater. 2016;26(3):408–420.
  • Brinkmann M, Rannou P. Effect of molecular weight on the structure and morphology of oriented thin films of regioregular poly(3-hexylthiophene) grown by directional epitaxial solidification. Adv Funct Mater. 2007;17(1):101–108.
  • Kajiya D, Ozawa S, Koganezawa T, et al. Enhancement Of out-of-plane mobility in P3HT film by rubbing: aggregation and planarity enhanced with low regioregularity. J Phys Chem C. 2015;119(15):7987–7995.
  • Kajiya D, Koganezawa T, Saitow K. Enhancement of out-of-plane mobilities of three poly(3-alkylthiophene)s and associated mechanism. J Phys Chem C. 2016;120(41):23351–23357.
  • Zen A, Pflaum J, Hirschmann S, et al. Effect of molecular weight and annealing of poly (3-hexylthiophene)s on the performance of organic field-effect transistors. Adv Funct Mater. 2004;14(8):757–764.
  • Kline RJ, McGehee MD, Kadnikova EN, et al. Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater. 2003;15(18):1519–1522.
  • Kline RJ, McGehee MD, Kadnikova EN, et al. Dependence Of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules. 2005;38(8):3312–3319.
  • Chang JF, Sun BQ, Breiby DW, et al. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem Mater. 2004;16(23):4772–4776.
  • Bao Z, Dodabalapur A, Lovinger AJ. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett. 1996;69(26):4108–4110.
  • Wang BH, Chen JB, Shen CY, et al. Relation between charge transport and the number of interconnected lamellar poly(3-hexylthiophene) crystals. Macromolecules. 2019;52(16):6088–6096.
  • Agbolaghi S, Abbaspoor S, Massoumi B, et al. Conversion of face-on orientation to edge-on/flat-on in induced-crystallization of poly(3-hexylthiophene) via functionalization/grafting of reduced graphene oxide with thiophene Adducts. Macromole Chem Phys. 2018;219(4):1700484–1700498.
  • Kajiya D, Saitow K. Ultrapure films of polythiophene derivatives are born on a substrate by liquid flow. ACS Appl Energy Mater. 2018;1(12):6881–6889.
  • Sakata T, Saitow K. 4D, microspectroscopy explores orientation and aggregations in π-conjugated polymer films prepared by brush Printing. J Phys Chem Lett. 2022;13(2):653–660.
  • Chae S, Yi A, Kim HJ. Molecular engineering of a conjugated polymer as a hole transporting layer for versatile p–i–n perovskite solar cells. Mater Today Energy. 2019;14:10034.
  • Chae S, Yi A, Lee HH, et al. Laser-induced orientation transformation of a conjugated polymer thin film with enhanced vertical charge transport. J Mater Chem C. 2018;6(35):9374–9382.
  • Chaudhary V, Pandey RK, Sahu PK, et al. MoS2 assisted self-assembled poly(3-hexylthiophene) thin films at an air/liquid interface for high-performance field-effect transistors under ambient conditions. J Phys Chem C. 2020;124(15):8101–8109.
  • Kleinhenz N, Persson N, Xue Z, et al. Ordering of poly(3-hexylthiophene) in solutions and films: effects of fiber length and grain boundaries on anisotropy and mobility. Chem Mater. 2016;28(11):3905–3913.
  • Kim N, Lee BH, Choi D, et al. Role of interchain coupling in the metallic state of conducting polymers. Phys Rev Lett. 2012;109(10):106405.
  • Kajiya D, Saitow K. Si-Nanocrystal/p3ht hybrid films with a 50- and 12-fold enhancement of hole mobility and density: films prepared by successive drop casting. Nanoscale. 2015;7(38):15780–15788.
  • Xu G, Bao Z, Groves JT. Langmuir−blodgett films of regioregular poly(3-hexylthiophene) aS field-effect transistors. Langmuir. 2000;16(4):1834–1841.
  • Matsui J, Yoshida S, Mikayama T, et al. Fabrication of polymer langmuir−blodgett films containing regioregular poly(3-hexylthiophene) for application to field-effect transistor. Langmuir. 2005;21(12):5343–5348.
  • Zhu H, Yamamoto S, Matsui J, et al. Resistive non-volatile memories fabricated with poly(vinylidene fluoride)/poly(thiophene) blend nanosheets. RSC Adv. 2018;8(15):7963–7968.
  • Leu C-M, Chang Y-T, Wei K-H. Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chem Mater. 2003;15(19):3721–3727.
  • Elemans JAAW, Lei S, De Feyter S. Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angewandte Chemie. 2009;48(40):7298–7332.
  • Zhu T, Zheng LY, Yi C, et al. Two-dimensional conjugated polymeric nanocrystals for organic electronics. Acs Appl Electron Mater. 2019;1(8):1458–1464.
  • Kim Y-J, Jung H-T, Ahn CW, et al. Simultaneously induced self-assembly of poly(3-hexylthiophene) (P3HT) nanowires and thin-film fabrication via solution-floating method on a water substrate. Adv Mater Interfaces. 2017;4(19):19.
  • Imanishi M, Kajiya D, Koganezawa T, et al. Uniaxial orientation of P3HT film prepared by soft friction transfer method. Sci Rep. 2017;7(1):5141–5150.
  • Agbolaghi S, Zenoozi S, Hosseini Z, et al. Scrolled/flat crystalline structures of poly(3-hexylthiophene) and Poly(ethylene glycol) block copolymers subsuming unseeded half-ring-like and seeded cubic, epitaxial, and fibrillar crystals. Macromolecules. 2016;49(24):9531–9541.
  • Chen D, Zhao W, Russell TP. P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates. ACS Nano. 2012;6(2):1479–1485.
  • Byun J, Kim Y, Jeon G, et al. Ultrahigh density array of free-standing poly(3-hexylthiophene) nanotubes on conducting substrates via solution wetting. Macromolecules. 2011;44(21):8558–8562.
  • Cui J, Rodriguez-Rodriguez A, Hernandez M, et al. Laser-induced periodic surface structures on P3HT and on its photovoltaic blend with PC71BM. ACS Appl Mater Interfaces. 2016;8(46):31894–31901.