2,232
Views
6
CrossRef citations to date
0
Altmetric
Focus on Advancements of Functional Materials with Nanoarchitectonics as Post-Nanotechnology Concept in Materials Science

Nanoscale hetero-interfaces for electrocatalytic and photocatalytic water splitting

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 587-616 | Received 15 Aug 2022, Accepted 12 Sep 2022, Published online: 04 Oct 2022

References

  • Höök M, Tang X. Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy. 2013;52:797–809.
  • Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294–303.
  • Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater. 2017;16(1):16–22.
  • Hisatomi T, Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat Catal. 2019;2(5):387–399.
  • Wang Q, Domen K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev. 2020;120(2):919–985.
  • Seh ZW, Kibsgaard J, Dickens CF, et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):aad4998. DOI:10.1126/science.aad4998
  • Romano V, D’Angelo G, Perathoner S, et al. Current density in solar fuel technologies. Energy Environ Sci. 2021;14(11):5760–5787. DOI:10.1039/D1EE02512K
  • Zhang FF, Zhu YL, Lin Q, et al. Noble-Metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ Sci. 2021;14(5):2954–3009. DOI:10.1039/D1EE00247C
  • Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev. 2015;44(8):2060–2086. DOI:10.1039/C4CS00470A
  • Luo Y, Zhang Z, Chhowalla M, et al. Recent advances in design of electrocatalysts for high‐current‐density water splitting. Adv Mater. 2022;34(16):2108133. DOI:10.1002/adma.202108133
  • Gong Y, Yao J, Wang P, et al. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chin J Chem Eng. 2022;43:282–296.
  • Ran J, Zhang J, Yu J, et al. Earth-Abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev. 2014;43(22):7787–7812. DOI:10.1039/c3cs60425j
  • Wang J, Gao Y, Kong H, et al. Non-Precious-Metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem Soc Rev. 2020;49(24):9154–9196. DOI:10.1039/D0CS00575D
  • Cao L-M, Lu D, Zhong D-C, et al. Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting. Coord Chem Rev. 2020;407:213156.
  • Song H, Luo S, Huang H, et al. Solar-Driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Lett. 2022;7(3):1043–1065. DOI:10.1021/acsenergylett.1c02591
  • Wang W, Xu X, Zhou W, et al. Recent progress in metal‐organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv Sci. 2017;4(4):1600371. DOI:10.1002/advs.201600371
  • Lin S, Huang H, Ma T, et al. Photocatalytic oxygen evolution from water splitting. Adv Sci. 2021;8(1):23–25. DOI:10.1002/advs.202002458
  • Takanabe K. Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal. 2017;7(11):8006–8022.
  • C-F F, Wu X, Yang J, et al. Material design for photocatalytic water splitting from a theoretical perspective. Adv Mater. 2018;30(48):1802106. DOI:10.1002/adma.201802106
  • Chen L, Ren JT, Yuan ZY, et al. Design strategies of phosphorus-containing catalysts for photocatalytic, photoelectrochemical and electrocatalytic water splitting. Green Chem. 2022;24(2):713–747. DOI:10.1039/d1gc03768d
  • Zhang X, Wang X, Wang D, et al. Conformal BiVO4-layer/WO3-nanoplate-array heterojunction photoanode modified with cobalt phosphate cocatalyst for significantly enhanced photoelectrochemical performances. ACS Appl Mater Interfaces. 2019;11(6):5623–5631. DOI:10.1021/acsami.8b05477
  • Fu A, Chen X, Tong L, et al. Remarkable visible-light photocatalytic activity enhancement over au/p-type TiO2 promoted by efficient interfacial charge transfer. ACS Appl Mater Interfaces. 2019;11(27):24154–24163. DOI:10.1021/acsami.9b07110
  • Shi L, Chang K, Zhang H, et al. Drastic enhancement of photocatalytic activities over phosphoric acid protonated porous g-C3N4 nanosheets under visible light. Small. 2016;12(32):4431–4439. DOI:10.1002/smll.201601668
  • Zhang Z, Bian L, Tian H, et al. Tailoring the surface and interface structures of copper-based catalysts for electrochemical reduction of CO2 to ethylene and ethanol. Small. 2022;18(18):2107450. DOI:10.1002/smll.202107450
  • Wang ZL, Choi J, Xu M, et al. Optimizing Electron Densities of Ni-N-C complexes by hybrid coordination for efficient electrocatalytic CO2 reduction. ChemSuschem. 2020;13(5):929–937. DOI:10.1002/cssc.201903427
  • Nai J, Xu X, Xie Q, et al. Construction of Ni(CN)2/NiSe2 heterostructures by stepwise topochemical pathways for efficient electrocatalytic oxygen evolution. Adv Mater. 2022;34(4):2104405. DOI:10.1002/adma.202104405
  • Guo H, Wu A, Xie Y, et al. 2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron redistribution for effective electrocatalytic overall water splitting. J Mater Chem a. 2021;9(13):8620–8629. DOI:10.1039/d0ta11997k
  • Wen Y, Qi J, Wei P, et al. Design of Ni3N/Co2N heterojunctions for boosting electrocatalytic alkaline overall water splitting. J Mater Chem a. 2021;9(16):10260–10269. DOI:10.1039/D1TA00885D
  • Xu Q, Jiang H, Zhang H, et al. Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl Catal B Environ. 2019;242:60–66.
  • Gong M, Li Y, Wang H, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc. 2013;135(23):8452–8455. DOI:10.1021/ja4027715
  • Kuang P, Tong T, Fan K, et al. In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide ph range. ACS Catal. 2017;7(9):6179–6187. DOI:10.1021/acscatal.7b02225
  • Zhang J, Li J, Zhong C, et al. Surface-Electronic-Structure reconstruction of perovskite via double-cation gradient etching for superior water oxidation. Nano Lett. 2021;21(19):8166–8174. DOI:10.1021/acs.nanolett.1c02623
  • Jia Y, Zhang L, Gao G, et al. A heterostructure coupling of exfoliated ni–fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv Mater. 2017;29(17):1700017. DOI:10.1002/adma.201700017
  • Cai Z, Wang Z, Xia Y, et al. Tailored catalytic nanoframes from metal–organic frameworks by anisotropic surface modification and etching for the hydrogen evolution reaction. Angew Chem Int Ed. 2021;133(9):4797–4805. DOI:10.1002/ange.202010618
  • Wang H, Fu W, Yang X, et al. Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis. J Mater Chem a. 2020;8(15):6926–6956. DOI:10.1039/c9ta11646j
  • Xu Q, Zhang J, Zhang H, et al. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ Sci. 2021;14(10):5228–5259. DOI:10.1039/d1ee02105b
  • Long X, Qiu W, Wang Z, et al. Recent advances in transition metal–based catalysts with heterointerfaces for energy conversion and storage. Mater Today Chem. 2019;11:16–28.
  • Ma J, Peng X, Zhou Z, et al. Extended conjugation refining carbon nitride for non‐sacrificial H2O2 photosynthesis and hypoxic tumor therapy. Angew Chem Int. Ed. 2022;(accepted article). doi:10.1002/anie.202210856.
  • Kwon T, Jun M, Joo J, et al. Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications. J Mater Chem a. 2019;7(10):5090–5110. DOI:10.1039/c8ta09494b
  • Zheng D, Yu L, Liu W, et al. Structural advantages and enhancement strategies of heterostructure water-splitting electrocatalysts. Cell Reports Phys Sci. 2021;2(6):100443. DOI:10.1016/j.xcrp.2021.100443
  • Zhao C, Li Y, Zhang W, et al. Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energy Environ Sci. 2020;13(1):53–85. DOI:10.1039/c9ee02230a
  • Zhao G, Rui K, Dou SX, et al. Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater. 2018;28(43):1803291. DOI:10.1002/adfm.201803291
  • Su Q, Li Y, Hu R, et al. Heterojunction photocatalysts based on 2D materials: the role of configuration. Adv Sustain Syst. 2020;4(9):1–19. DOI:10.1002/adsu.202000130
  • Zhao R, Li Q, Jiang X, et al. Interface engineering in transition metal-based heterostructures for oxygen electrocatalysis. Mater Chem Front. 2021;5(3):1033–1059. DOI:10.1039/d0qm00729c
  • Su T, Shao Q, Qin Z, et al. Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 2018;8(3):2253–2276. DOI:10.1021/acscatal.7b03437
  • Yang H, Zhou Q, Fang Z, et al. Carbon nitride of five-membered rings with low optical bandgap for photoelectrochemical biosensing. Chem. 2021;7(10):2708–2721. DOI:10.1016/j.chempr.2021.06.010
  • Liang C, Zou P, Nairan A, et al. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@nife alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ Sci. 2020;13(1):86–95. DOI:10.1039/c9ee02388g
  • Yang Y, Wang Y, He HL, et al. Covalently connected Nb4N5-xOx-MoS2 heterocatalysts with desired electron density to boost hydrogen evolution. ACS Nano. 2020;14(4):4925–4937. DOI:10.1021/acsnano.0c01072
  • Gu Y, Chen S, Ren J, et al. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano. 2018;12(1):245–253. DOI:10.1021/acsnano.7b05971
  • Wei S, Cui X, Xu Y, et al. Iridium-Triggered phase transition of MoS2 nanosheets boosts overall water splitting in alkaline media. ACS Energy Lett. 2019;4(1):368–374. DOI:10.1021/acsenergylett.8b01840
  • Zhang H, Maijenburg AW, Li X, et al. Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv Funct Mater. 2020;30(34):2003261. DOI:10.1002/adfm.202003261
  • Moniz SJA, Shevlin SA, Martin DJ, et al. Visible-Light driven heterojunction photocatalysts for water splitting-a critical review. Energy Environ Sci. 2015;8(3):731–759. DOI:10.1039/c4ee03271c
  • Wang Y, Yan D, El Hankari S, et al. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv Sci. 2018;5(8):1800064. DOI:10.1002/advs.201800064
  • Song J, Wei C, Huang Z-F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem Soc Rev. 2020;49(7):2196–2214. DOI:10.1039/C9CS00607A
  • Huang C, Wen Y, Ma J, et al. Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions. Nat Commun. 2021;12(1):320. DOI:10.1038/s41467-020-20521-5
  • Afroz K, Moniruddin M, Bakranov N, et al. A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. J Mater Chem a. 2018;6(44):21696–21718. DOI:10.1039/c8ta04165b
  • Chong W-K, Ng B-J, Tan L-L, et al. Recent advances in nanoscale engineering of ternary metal sulfide-based heterostructures for photocatalytic water splitting applications. Energy & Fuels. 2022;36(8):4250–4267. DOI:10.1021/acs.energyfuels.2c00291
  • Li X, Yu J, Jaroniec M, et al. Hierarchical photocatalysts. Chem Soc Rev. 2016;45(9):2603–2636. DOI:10.1039/C5CS00838G
  • Qi Y, Song L, Ouyang S, et al. Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In2O3−x nanosheets with bifunctional oxygen vacancies. Adv Mater. 2020;32(6):1903915. DOI:10.1002/adma.201903915
  • Yang B, Zhang N, Chen G, et al. Serpentine CoxNi3-xGe2O5(OH)4 nanosheets with tuned electronic energy bands for highly efficient oxygen evolution reaction in alkaline and neutral electrolytes. Appl Catal B Environ. 2020;260:118184.
  • Yang B, Liu K, Li H, et al. Accelerating CO2 electroreduction to multicarbon products via synergistic electric–thermal field on copper nanoneedles. J Am Chem Soc. 2022;144(7):3039–3049. DOI:10.1021/jacs.1c11253
  • Wang P, Zhang X, Zhang J, et al. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat Commun. 2017;8(1):14580. DOI:10.1038/ncomms14580
  • Yuan Z, Li J, Yang M, et al. Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer. J Am Chem Soc. 2019;141(12):4972–4979. DOI:10.1021/jacs.9b00154
  • Zhang B, Liu J, Wang J, et al. Interface engineering: the Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy. 2017;37:74–80.
  • Zhang J, Qian J, Ran J, et al. Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions. ACS Catal. 2020;10(21):12376–12384. DOI:10.1021/acscatal.0c03756
  • Xiong Y, Xu L, Jin C, et al. Interface-Engineered atomically thin Ni3S2/MnO2 heterogeneous nanoarrays for efficient overall water splitting in alkaline media. Appl Catal B Environ. 2019;254:329–338.
  • Yang B, Zhang N, et al. Tuning the electronic structure of layered Co-based serpentine nanosheets for efficient oxygen evolution reaction. J Phys D Appl Phys. 2022;55(32):324001. DOI:10.1088/1361-6463/ac6d27
  • Wu T, Song E, Zhang S, et al. Engineering metallic heterostructure based on Ni3N and 2M‐MoS2 for alkaline water electrolysis with industry‐compatible current density and stability. Adv Mater. 2022;34(9):2108505. DOI:10.1002/adma.202108505
  • Jiao J, Yang W, Pan Y, et al. Interface engineering of partially phosphidated Co@Co–P@NPCNTs for highly enhanced electrochemical overall water splitting. Small. 2020;16(41):2002124. DOI:10.1002/smll.202002124
  • Mahmood J, Li F, Jung SM, et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat Nanotechnol. 2017;12(5):441–446. DOI:10.1038/nnano.2016.304
  • Wu X, Wang Z, Zhang D, et al. Solvent-Free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat Commun. 2021;12(1):4018. DOI:10.1038/s41467-021-24322-2
  • Lu M, Kong S, Yan S, et al. Variable-Valence ion and heterointerface accelerated electron transfer kinetics of electrochemical water splitting. J Mater Chem a. 2022;10(23):12391–12399. DOI:10.1039/D1TA11011J
  • Kuang P, He M, Zou H, et al. 0D/3D MoS2-NiS2/N-doped graphene foam composite for efficient overall water splitting. Appl Catal B Environ. 2019;254:15–25.
  • Yang L, Liu R, Jiao L, et al. Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting. Adv Funct Mater. 2020;30(14):1909618. DOI:10.1002/adfm.201909618
  • Wang H, Niu R, Liu J, et al. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p—n heterojunction for improved photocatalytic hydrogen evolution: built-in electric field modulated charge separation and mechanism unveiling. Nano Res. 2022;15(8):6987–6998. DOI:10.1007/s12274-022-4329-z
  • Suryanto BHR, Wang Y, Hocking RK, et al. Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat Commun. 2019;10(1):5599. DOI:10.1038/s41467-019-13415-8
  • Ji L, Wei Y, Wu P, et al. Heterointerface engineering of Ni2P-Co2P nanoframes for efficient water splitting. Chem Mater. 2021;33(23):9165–9173. DOI:10.1021/acs.chemmater.1c02609
  • Gbadamasi S, Mohiuddin M, Krishnamurthi V, et al. Interface chemistry of two-dimensional heterostructures-fundamentals to applications. Chem Soc Rev. 2021;50(7):4684–4729. DOI:10.1039/d0cs01070g
  • Li Z, Hu M, Wang P, et al. Heterojunction catalyst in electrocatalytic water splitting. Coord Chem Rev. 2021;439:213953.
  • Li W, Song Q, Li M, et al. Chemical heterointerface engineering on hybrid electrode materials for electrochemical energy storage. Small Methods. 2021;5(8):2100444. DOI:10.1002/smtd.202100444
  • Luo M, Sun W, Bin XB, et al. Interface engineering of air electrocatalysts for rechargeable zinc–air batteries. Adv Energy Mater. 2021;11(4):2002762. DOI:10.1002/aenm.202002762
  • Liang L, Gu W, Wu Y, et al. Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv Mater. 2022;34(4):2106195. DOI:10.1002/adma.202106195
  • Ahsan MA, He T, Noveron JC, et al. Low-Dimensional heterostructures for advanced electrocatalysis: an experimental and computational perspective. Chem Soc Rev. 2022;51(3):812–828. DOI:10.1039/d1cs00498k
  • Xu H, Shang H, Wang C, et al. Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting. Coord Chem Rev. 2020;418:213374.
  • Prabhu P, Jose V, M LJ, et al. Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter. 2020;2(3):526–553. DOI:10.1016/j.matt.2020.01.001
  • Wang ZL, Sun K, Henzie J, et al. Electrochemically: in situ controllable assembly of hierarchically-ordered and integrated inorganic-carbon hybrids for efficient hydrogen evolution. Mater Horizons. 2018;5(6):1194–1203. DOI:10.1039/c8mh00773j
  • Ni S, Qu H, Xing H, et al. Interfacial engineering of transition-metal sulfides heterostructures with built-in electric-field effects for enhanced oxygen evolution reaction. Chin J Chem Eng. 2022;41:320–328.
  • Zhu J, Guo Y, Liu F, et al. Regulative Electronic States around Ruthenium/Ruthenium Disulphide Heterointerfaces for Efficient Water Splitting in Acidic Media. Angew Chem Int Ed. 2021;133(22):12436–12442. DOI:10.1002/ange.202101539
  • Wang H, Wu Y, Xiao T, et al. Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl Catal B Environ. 2018;233:213–225.
  • Wang Z, Inoue Y, Hisatomi T, et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat Catal. 2018;1(10):756–763. DOI:10.1038/s41929-018-0134-1
  • Yuan YJ, Shen ZK, Song S, et al. Co-P bonds as atomic-level charge transfer channel to boost photocatalytic H2 production of Co2P/Black phosphorus nanosheets photocatalyst. ACS Catal. 2019;9(9):7801–7807. DOI:10.1021/acscatal.9b02274
  • Fan X, Liu Y, Chen S, et al. Defect-Enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting. Nat Commun. 2018;9(1):1809. DOI:10.1038/s41467-018-04248-y
  • Zhang Z, Karimata I, Nagashima H, et al. Interfacial oxygen vacancies yielding long-lived holes in hematite mesocrystal-based photoanodes. Nat Commun. 2019;10(1):4832. DOI:10.1038/s41467-019-12581-z
  • Liu H, Jin M, Zhan D, et al. Stacking faults triggered strain engineering of ZIF-67 derived Ni-Co bimetal phosphide for enhanced overall water splitting. Appl Catal B Environ. 2020;272:118951.
  • Zhu C, Yu M, Zhou J, et al. Strain-Driven growth of ultra-long two-dimensional nano-channels. Nat Commun. 2020;11(1):772. DOI:10.1038/s41467-020-14521-8
  • Ma Z, Wang S, Li C, et al. Strain engineering for C2N/Janus monochalcogenides van der Waals heterostructures: potential applications for photocatalytic water splitting. Appl Surf Sci. 2021;536:147845.
  • Huang X, Xu X, Luan X, et al. CoP nanowires coupled with CoMop nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy. 2020;68:104332.
  • Wang H, Niu Z, Peng Z, et al. Engineering interface on a 3D CoxNi1-x(OH)2@MoS2 hollow heterostructure for robust electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces. 2022;14(7):9116–9125. DOI:10.1021/acsami.1c22971
  • Zhang J, Wang T, Pohl D, et al. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem Int Ed. 2016;128(23):6814–6819. DOI:10.1002/ange.201602237
  • Xiong P, Zhang X, Wan H, et al. Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett. 2019;19(7):4518–4526. DOI:10.1021/acs.nanolett.9b01329
  • Liu M, Jing D, Zhou Z, et al. Twin-Induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat Commun. 2013;4(1):2278. DOI:10.1038/ncomms3278
  • Che W, Cheng W, Yao T, et al. Fast photoelectron transfer in (cring)-C3N4 plane heterostructural nanosheets for overall water splitting. J Am Chem Soc. 2017;139(8):3021–3026. DOI:10.1021/jacs.6b11878
  • Liu M, Wang J-A, Klysubun W, et al. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat Commun. 2021;12(1):5260. DOI:10.1038/s41467-021-25647-8
  • Zhang Z, Qian Q, Li B, et al. Interface engineering of monolayer MoS2/GaN hybrid heterostructure: modified band alignment for photocatalytic water splitting application by nitridation treatment. ACS Appl Mater Interfaces. 2018;10(20):17419–17426. DOI:10.1021/acsami.8b01286
  • Li JS, Wang Y, Liu CH, et al. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat Commun. 2016;7(1):11204. DOI:10.1038/ncomms11204
  • Fan HT, Wu Z, Liu KC, et al. Fabrication of 3D CuS@ZnIn2S4 hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution. Chem Eng J. 2022;433(P1):134474. DOI:10.1016/j.cej.2021.134474
  • Nie H, Liu Y, Li Y, et al. In-Situ transient photovoltage study on interface electron transfer regulation of carbon dots/NiCo2O4 photocatalyst for the enhanced overall water splitting activity. Nano Res. 2022;15(3):1786–1795. DOI:10.1007/s12274-021-3723-2
  • Wei T, Zhu YN, An X, et al. Defect modulation of Z-Scheme TiO2/Cu2O photocatalysts for durable water splitting. ACS Catal. 2019;9(9):8346–8354. DOI:10.1021/acscatal.9b01786
  • Lei F, Liu H, Yu J, et al. Promoted water splitting by efficient electron transfer between Au nanoparticles and hematite nanoplates: a theoretical and experimental study. Phys Chem Chem Phys. 2019;21(3):1478–1483. DOI:10.1039/c8cp06926c
  • Xue C, Li H, An H, et al. NiSx quantum dots accelerate electron transfer in cd0.8zn0.2s photocatalytic system via an rgo nanosheet “bridge” toward visible-light-driven hydrogen evolution. ACS Catal. 2018;8(2):1532–1545. DOI:10.1021/acscatal.7b04228
  • Lu Z, Cao Y, Xie J, et al. Construction of Co2P/CoP@Co@NCNT rich-interface to synergistically promote overall water splitting. Chem Eng J. 2022;430(P2):132877. DOI:10.1016/j.cej.2021.132877
  • Shi L, Ren X, Wang Q, et al. Stabilizing atomically dispersed catalytic sites on tellurium nanosheets with strong metal–support interaction boosts photocatalysis. Small. 2020;16(35):2002356. DOI:10.1002/smll.202002356
  • Tang Y, Zhou W, Shang Q, et al. Discerning the mechanism of expedited interfacial electron transformation boosting photocatalytic hydrogen evolution by metallic 1T-WS2-induced photothermal effect. Appl Catal B Environ. 2022;310:121295.
  • Feng N, Lin H, Deng F, et al. Interfacial-Bonding Ti–N–C boosts efficient photocatalytic H2 evolution in close coupling g-C3N4/TiO2. J Phys Chem C. 2021;125(22):12012–12018. DOI:10.1021/acs.jpcc.1c02606
  • Yang G, Li Y, Pang H, et al. Ultrathin cobalt–manganese nanosheets: an efficient platform for enhanced photoelectrochemical water oxidation with electron‐donating effect. Adv Funct Mater. 2019;29(46):1904622. DOI:10.1002/adfm.201904622
  • Su L, Luo L, Song H, et al. Hemispherical shell-thin lamellar WS2 porous structures composited with CdS photocatalysts for enhanced H2 evolution. Chem Eng J. 2020;388:124346.
  • Kumar A, Bui VQ, Lee J, et al. Modulating Interfacial Charge Density of NiP2-FeP2 via coupling with metallic Cu for accelerating alkaline hydrogen evolution. ACS Energy Lett. 2021;6(2):354–363. DOI:10.1021/acsenergylett.0c02498
  • Ren X, Wei S, Wang Q, et al. Rational construction of dual cobalt active species encapsulated by ultrathin carbon matrix from MOF for boosting photocatalytic H2 generation. Appl Catal B Environ. 2021;286:119924.
  • Chang K, Mei Z, Wang T, et al. MoS2/graphene cocatalyst for efficient photocatalytic H 2 evolution under visible light irradiation. ACS Nano. 2014;8(7):7078–7087. DOI:10.1021/nn5019945
  • Lv Y, Duan S, Zhu Y, et al. Interface control and catalytic performances of Au-NiSx heterostructures. Chem Eng J. 2020;382:122794.
  • Meng T, Qin J, Xu D, et al. Atomic heterointerface-induced local charge distribution and enhanced water adsorption behavior in a cobalt phosphide electrocatalyst for self-powered highly efficient overall water splitting. ACS Appl Mater Interfaces. 2019;11(9):9023–9032. DOI:10.1021/acsami.8b19341
  • Zhao G, Sun Y, Zhou W, et al. Superior photocatalytic H2 production with cocatalytic Co/Ni species anchored on sulfide semiconductor. Adv Mater. 2017;29(40):1703258. DOI:10.1002/adma.201703258
  • Wang M, Ju P, Li J, et al. Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting. ACS Sustain Chem Eng. 2017;5(9):7878–7886. DOI:10.1021/acssuschemeng.7b01386
  • Liao C, Yang B, Zhang N, et al. Constructing conductive interfaces between nickel oxide nanocrystals and polymer carbon nitride for efficient electrocatalytic oxygen evolution reaction. Adv Funct Mater. 2019;29(40):1904020. DOI:10.1002/adfm.201904020
  • Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc. 2011;133(19):7296–7299. DOI:10.1021/ja201269b
  • Zhou M, Weng Q, Zhang X, et al. In situ electrochemical formation of core-shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J Mater Chem a. 2017;5(9):4335–4342. DOI:10.1039/c6ta09366c
  • Gong M, Zhou W, Tsai M-C, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun. 2014;5(1):4695. DOI:10.1038/ncomms5695
  • Xie Y, Yu H, Deng L, et al. Anchoring stable FeS2 nanoparticles on MXene nanosheets: via interface engineering for efficient water splitting. Inorg Chem Front. 2022;9(4):662–669. DOI:10.1039/d1qi01465j
  • Zhu Y, Chen J, Shao L, et al. Oriented facet heterojunctions on CdS nanowires with high photoactivity and photostability for water splitting. Appl Catal B Environ. 2020;268:118744.
  • Kim Y, Watanabe M, Matsuda J, et al. Tensile strain for band engineering of SrTiO3 for increasing photocatalytic activity to water splitting. Appl Catal B Environ. 2020;278:119292.
  • Sun W, Zhou Z, Zaman WQ, et al. Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst. ACS Appl Mater Interfaces. 2017;9(48):41855–41862. DOI:10.1021/acsami.7b12775
  • Li Y, Yin J, An L, et al. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small. 2018;14(26):1801070. DOI:10.1002/smll.201801070
  • Zhou Y, Li R, Dong L, et al. Heterointerface and defect dual engineering in a superhydrophilic Ni2P/WO2.83 microsphere for boosting alkaline hydrogen evolution reaction at high current density. ACS Appl Mater Interfaces. 2022;14(16):18816–18824. DOI:10.1021/acsami.2c01208
  • Jin W, Chen J, Wu H, et al. Interface engineering of oxygen-vacancy-rich NiCo2O4/NiCoP heterostructure as an efficient bifunctional electrocatalyst for overall water splitting. Catal Sci Technol. 2020;10(16):5559–5565. DOI:10.1039/d0cy01115k
  • An L, Feng J, Zhang Y, et al. Epitaxial heterogeneous interfaces on N-NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting. Adv Funct Mater. 2019;29(1):1805298. DOI:10.1002/adfm.201805298
  • Liu J, Wang J, Zhang B, et al. Mutually beneficial Co3O4@MoS2 heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting. J Mater Chem a. 2018;6(5):2067–2072. DOI:10.1039/c7ta10048e
  • Liu J, Zheng Y, Jiao Y, et al. NiO as a bifunctional promoter for RuO2 toward superior overall water splitting. Small. 2018;14(16):1704073. DOI:10.1002/smll.201704073
  • Xie X, Song M, Wang L, et al. Electrocatalytic hydrogen evolution in neutral ph solutions: dual-phase synergy. ACS Catal. 2019;9(9):8712–8718. DOI:10.1021/acscatal.9b02609
  • Zhao G, Li P, Cheng N, et al. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: breaking the scaling relation, stabilizing iridium(v), and beyond. Adv Mater. 2020;32(24):2000872. DOI:10.1002/adma.202000872