1,490
Views
4
CrossRef citations to date
0
Altmetric
New topics/Others

What is the speed limit of martensitic transformations?

, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 633-641 | Received 18 Jul 2022, Accepted 21 Sep 2022, Published online: 06 Oct 2022

References

  • Leiserson CE, Thompson NC, Emer JS, et al. There’s plenty of room at the top: what will drive computer performance after Moore’s law? Science. 2020;368(6495):eaam9744. DOI:10.1126/science.aam9744
  • Landauer R. Dissipation and noise immunity in computation and communication. Nature. 1988;335(6193):779–784.
  • Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 2006;439(7079):957–960. DOI:10.1038/nature04493
  • Sun L, Huang WM, Ding Z, et al. Stimulus-responsive shape memory materials: a review. Mater Des. 2012;33:577–640.
  • Liu J, Gottschall T, Skokov KP, et al. Giant magnetocaloric effect driven by structural transitions. Nat Mater. 2012;11(7):620–626. DOI:10.1038/nmat3334
  • Gueltig M, Wendler F, Ossmer H, et al. High-performance thermomagnetic generators based on Heusler alloy films. Adv Energy Mater. 2017;7(5):1601879. DOI:10.1002/aenm.201601879
  • Burr GW, Breitwisch MJ, Franceschini M, et al. Phase change memory technology. J Vac Sci Technol B. 2010;28(2):223–262. DOI:10.1116/1.3301579
  • Bunshah R, Mehl R. Rate of propagation of martensite. Trans Am Inst Min Metall Eng. 1953;197:1251–1258.
  • Nishiyama Z. Martensitic transformation. New York: Academic Press; 1978.
  • Meyers MA, Thadhani NN, Chang SN. Martensitic transformation induced by tensile stress pulses. J Phys Colloq. 1988;49(C3):C3–362.
  • Suiker ASJ, Thijsse BJ. Nucleation, kinetics and morphology of displacive phase transformations in iron. J Mech Phys Solids. 2013;61(11):2273–2301.
  • Yin Q, Wu X, Huang C. Atomistic study on shock behaviour of NiTi shape memory alloy. Philos Mag. 2017;97(16):1311–1333.
  • Vollach S, Shilo D. The mechanical response of shape memory alloys under a rapid heating pulse. Exp Mech. 2010;50(6):803–811.
  • Vollach S, Shlagman H, Shilo D. Kinetics of the reverse martensitic transformation in shape memory alloys under an abrupt heating pulse. Scr Mater. 2017;135:76–79.
  • Dana A, Sekiguchi H, Aoyama K, et al. The evolution of the martensitic transformation at the high-driving-force regime: a microsecond-scale time-resolved X-ray diffraction study. J Alloys Compd. 2021;856:157968.
  • Gottschall T, Skokov KP, Scheibel F, et al. Dynamical effects of the martensitic transition in magnetocaloric Heusler alloys from direct ΔTad measurements under different magnetic-field-sweep rates. Phys Rev Appl. 2016;5(2):024013. DOI:10.1103/PhysRevApplied.5.024013
  • Park HS, Kwon O-H, Baskin JS, et al. Direct observation of martensitic phase-transformation dynamics in Iron by 4D single-pulse electron microscopy. Nano Lett. 2009;9(11):3954–3962. DOI:10.1021/nl9032704
  • Kalantar DH, Belak JF, Collins GW, et al. Direct observation of the α-ε transition in shock-compressed iron via nanosecond x-ray diffraction. Phys Rev Lett. 2005;95(7):075502. DOI:10.1103/PhysRevLett.95.075502
  • Ullakko K, Huang JK, Kantner C, et al. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett. 1996;69(13):1966–1968. DOI:10.1063/1.117637
  • Hobza A, Patrick CL, Ullakko K, et al. Sensing strain with Ni-Mn-Ga. Sens Actuat Phys. 2018;269:137–144.
  • Thomas M, Heczko O, Buschbeck J, et al. Magnetically induced reorientation of martensite variants in constrained epitaxial Ni–Mn–Ga films grown on MgO(001). New J Phys. 2008;10(2):023040. DOI:10.1088/1367-2630/10/2/023040
  • Schwabe S, Niemann R, Backen A, et al. Building hierarchical martensiteartensite. Adv Funct Mater. 2021;31(7):2005715. DOI:10.1002/adfm.202005715
  • Shayduk R, Navirian H, Leitenberger W, et al. Nanoscale heat transport studied by high-resolution time-resolved x-ray diffraction. New J Phys. 2011;13(9):093032. DOI:10.1088/1367-2630/13/9/093032
  • Navirian HA, Schick D, Gaal P, et al. Thermoelastic study of nanolayered structures using time-resolved X-ray diffraction at high repetition rate. Appl Phys Lett. 2014;104(2):021906. DOI:10.1063/1.4861873
  • Shayduk R, Gaal P. Transition regime in the ultrafast laser heating of solids. J Appl Phys. 2020;127(7):073101.
  • Devarajan U, Kannan M, Thiyagarajan R, et al. Coupled magnetostructural transition in Ni-Mn-V-Ga Heusler alloys and its effect on the magnetocaloric and transport properties. J Phys Appl Phys. 2015;49(6):065001. DOI:10.1088/0022-3727/49/6/065001
  • Porcari G, Cugini F, Fabbrici S, et al. Convergence of direct and indirect methods in the magnetocaloric study of first order transformations: the case of Ni-Co-Mn-Ga Heusler alloys. Phys Rev B. 2012;86(10):104432. DOI:10.1103/PhysRevB.86.104432
  • Onsager L. Reciprocal relations in irreversible processes. II. Phys Rev. 1931;37(4):405–426.
  • Lobodyuk VA, Estrin EI. Isothermal martensitic transformations. Phys-Uspekhi. 2005;48(7):713.
  • Kustov S, Golovin I, Corró ML, et al. Isothermal martensitic transformation in metamagnetic shape memory alloys. J Appl Phys. 2010;107(5):053525. DOI:10.1063/1.3313922
  • Thadhani NN, Meyers MA. Kinetics of isothermal martensitic transformation. Prog Mater Sci. 1986;30(1):1–37.
  • Baró J, Dixon S, Edwards RS, et al. Simultaneous detection of acoustic emission and Barkhausen noise during the martensitic transition of a Ni-Mn-Ga magnetic shape-memory alloy. Phys Rev B. 2013;88(17):174108. DOI:10.1103/PhysRevB.88.174108
  • Planes A, Vives E. Avalanche criticality in thermal-driven martensitic transitions: the asymmetry of the forward and reverse transitions in shape-memory materials. J Phys Condens Matter. 2017;29(33):334001.
  • Diestel A, Niemann R, Schleicher B, et al. Reducing hysteresis losses by heating minor loops in magnetocaloric Ni–Mn–Ga–Co films. Energy Technol. 2018;6(8):1463–1469. DOI:10.1002/ente.201800134
  • Margolus N, Levitin LB. The maximum speed of dynamical evolution. Phys Nonlinear Phenom. 1998;120(1–2):188–195.
  • Koomey J, Berard S, Sanchez M, et al. Implications of historical trends in the electrical efficiency of computing. IEEE Ann Hist Comput. 2011;33(3):46–54. DOI:10.1109/MAHC.2010.28