2,325
Views
9
CrossRef citations to date
0
Altmetric
Focus on Advances in High Entropy Alloys

Edge-dislocation-induced ultrahigh elevated-temperature strength of HfMoNbTaW refractory high-entropy alloys

, , , & ORCID Icon
Pages 642-654 | Received 01 Aug 2022, Accepted 22 Sep 2022, Published online: 17 Oct 2022

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
  • Jien-Wei Y. Recent progress in high entropy alloys. Ann Chim Sci Mat. 2006;31(6):633–648.
  • George EP, Raabe D, Ritchie RO. High-Entropy alloys. Nature Rev Mater. 2019;4(8):515–534.
  • Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013;61(13):4887–4897.
  • George EP, Curtin WA, Tasan CC. High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020;188:435–474.
  • Maresca F, Curtin WA. Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys. Acta Mater. 2020;182:144–162.
  • Maresca F, Curtin WA. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K. Acta Mater. 2020;182:235–249.
  • Lin KH, Tseng CM, Chueh CC, et al. Different lattice distortion effects on the tensile properties of Ni-W dilute solutions and CrFeni and CoCrfemnni concentrated solutions. Acta Mater. 2021;221:117399.
  • Yeh JW. Physical metallurgy of high-entropy alloys. Jom-Us. 2015;67(10):2254–2261.
  • Cheng CY, Yang YC, Zhong YZ, et al. Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Curr Opin Solid St M. 2017;21(6):299–311.
  • Yeh JW. Strength through high slip-plane density. Science. 2021;374(6570):940–941.
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153–1158.
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534(7606):227–230.
  • Huang H, Wu Y, He J, et al. Phase-Transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv Mater. 2017;29(30):1701678.
  • Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature. 2018;563(7732):546–550.
  • Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science. 2018;362(6417):933–937.
  • Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics. 2010;18(9):1758–1765.
  • Senkov ON, Miracle DB, Chaput KJ, et al. Development and exploration of refractory high entropy alloys-A review. J Mater Res. 2018;33(19):3092–3128.
  • Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4(1):6200.
  • Tsai CW, Tsai MH, Tsai KY, et al. Microstructure and tensile properties of Al0.5CoCrCuFeNi alloys produced by simple rolling and annealing. Mater Sci Tech Lond. 2015;31(10):1178–1183.
  • Kumar A, Gupta M. An insight into evolution of light weight high entropy alloys: a review. Metals-Basel. 2016;6(9):199.
  • Tseng K, Yang Y, Juan C, et al. A light-weight high-entropy alloy Al 20 Be 20 Fe 10 Si 15 Ti 35. Sci China Technol Sci. 2018;61(2):184–188.
  • Sheikh S, Shafeie S, Hu Q, et al. Alloy design for intrinsically ductile refractory high-entropy alloys. J Appl Phys. 2016;120(16):164902.
  • Lilensten L, Couzinie JP, Bourgon J, et al. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater Res Lett. 2017;5(2):110–116.
  • K-C L, Chang Y-J, Murakami H, et al. An oxidation resistant refractory high entropy alloy protected by CrTao 4-based oxide. Sci Rep. 2019;9(1):1–12.
  • Kareer A, Waite JC, Li B, et al. Short communication: ‘low activation, refractory, high entropy alloys for nuclear applications’. J Nucl Mater. 2019;526:151744.
  • Lu YP, Huang HF, Gao XZ, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J Mater Sci Technol. 2019;35(3):369–373.
  • Wang Z, Wu H, Wu Y, et al. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering. Mater Today. 2022;54:83–89.
  • Coury FG, Kaufman M, Clarke AJ. Solid-Solution strengthening in refractory high entropy alloys. Acta Mater. 2019;175:66–81.
  • LaRosa CR, Shih M, Varvenne C, et al. Solid solution strengthening theories of high-entropy alloys. Mater Charact. 2019;151:310–317.
  • Kim IH, Oh HS, Kim SJ, et al. Rapid assessment of solid solution hardening via atomic size misfit parameter in refractory concentrated alloys. J Alloy Compd. 2021;886:161320.
  • Tseng KK, Juan CC, Tso S, et al. Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr alloys. Entropy-Switz. 2019;21(1):15.
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19(5):698–706.
  • Zhang P, Li SX, Zhang ZF. General relationship between strength and hardness. Mat Sci Eng A Struct. 2011;529:62–73.
  • Trefilov M VI, YV G IV. Characteristic temperature of deformation of crystalline materials. Cryst Res Technol. 1984;19(3):413–421.
  • Chen H, Kauffmann A, Laube S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys. Metall Mater Trans A. 2018;49a(3):772–781.
  • Seeger A. Peierls barriers, kinks, and flow stress: recent progress. Z Metallkd. 2002;93(8):760–777.
  • Schneider AS, Kaufmann D, Clark BG, et al. Correlation between critical temperature and strength of small-scale bcc pillars. Phys Rev Lett. 2009;103(10):105501.
  • Senkov ON, Scott JM, Senkova SV, et al. Microstructure and room temperature properties of a high-entropy TaNbhfzrti alloy. J Alloy Compd. 2011;509(20):6043–6048.
  • Yao HW, Qiao JW, Hawk JA, et al. Mechanical properties of refractory high-entropy alloys: experiments and modeling. J Alloy Compd. 2017;696:1139–1150.
  • Fleischer RL. Substitutional solution hardening. Acta Metall Mater. 1963;11(3):203–&.
  • Fazakas E, Zadorozhnyy V, Varga L, et al. Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X= V or Cr) refractory high-entropy alloys. Int J Refract Metals Hard Mater. 2014;47:131–138.
  • Baker H, Okamoto H. ASM H. Alloy phase diagrams. Vol. 3. USA: ASM International; 1992. p. 3.13.
  • Zhang Y, Zhou YJ, Lin JP, et al. Solid‐solution phase formation rules for multi‐component alloys. Adv Eng Mater. 2008;10(6):534–538.
  • Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132(2–3):233–238.
  • De Boer FR, Mattens WC, Boom R, et al. Cohesion in Metals: Transition Met Alloys. Elsevier. 1988.
  • Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46(12):2817–2829.
  • Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):103505.
  • Poletti MG, Battezzati L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 2014;75:297–306.
  • Guo S, Liu CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int. 2011;21(6):433–446.
  • Mann JB, Meek TL, Knight ET, et al. Configuration energies of the d-block elements. J Am Chem Soc. 2000;122(21):5132–5137.
  • Yurchenko N, Stepanov N, Salishchev G. Laves-Phase formation criterion for high-entropy alloys. Mater Sci Tech Lond. 2016;33(1):17–22.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–1583.
  • Leyson GPM, Curtin WA. Solute strengthening at high temperatures. Model Simul Mater Sc. 2016;24(6):065005.
  • Goodfellow [internet]. England: goodfellow Cambridge Ltd; 2008-2020 [cited 2020 Jun 30]. Available from: https://www.goodfellow.com/uk/en-gb/metal