2,716
Views
12
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Enhancement approaches for photothermal conversion of donor–acceptor conjugated polymer for photothermal therapy: a review

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 707-734 | Received 15 Jun 2022, Accepted 04 Oct 2022, Published online: 29 Nov 2022

References

  • Kalbasi A, Komar C, Tooker GM, et al. Tumor-Derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin Cancer Res. 2017;23(1):137. DOI:10.1158/1078-0432.CCR-16-0870
  • Miller KD, Siegel RL, Lin CC, et al., Cancer treatment and survivorship statistics, 2016. Cancer J Clin. 2016; 66 (4): 271–289.
  • Liu Y, Bhattarai P, Dai Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 2019;48(7):2053–2108. DOI:10.1039/C8CS00618K
  • Zhao L, Liu Y, Chang R, et al. Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy. Adv Funct Mater. 2019;29(4):1806877. DOI:10.1002/adfm.201806877
  • Shanmugam V, Selvakumar S, Yeh C-S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev. 2014;43(17):6254–6287.
  • Nomura S, Morimoto Y, Tsujimoto H, et al. Highly reliable, targeted photothermal cancer therapy combined with thermal dosimetry using a near-infrared absorbent. Sci Rep. 2020;10(1):9765. DOI:10.1038/s41598-020-66646-x
  • Phan TTV, Bui NQ, Cho S-W, et al. Photoacoustic imaging-guided photothermal therapy with tumor-targeting HA-FeOoh@ppy nanorods. Sci Rep. 2018;8(1):8809. DOI:10.1038/s41598-018-27204-8
  • Li Y, Miao Z, Shang Z, et al. A visible- and NIR-light responsive photothermal therapy agent by chirality-dependent MoO3−x nanoparticles. Adv Funct Mater. 2020;30(4):1906311. DOI:10.1002/adfm.201906311
  • Tsai W-K, Wang C-I, Liao C-H, et al. Molecular design of near-infrared fluorescent Pdots for tumor targeting: aggregation-induced emission versus anti-aggregation-caused quenching. Chem Sci. 2019;10(1):198–207. DOI:10.1039/C8SC03510E
  • Antaris AL, Chen H, Cheng K, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15(2):235–242. DOI:10.1038/nmat4476
  • Zhou B, Li Y, Niu G, et al. Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer. ACS Appl Mater Interfaces. 2016;8(44):29899–29905. DOI:10.1021/acsami.6b07838
  • Jung HS, Verwilst P, Sharma A, et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev. 2018;47(7):2280–2297. DOI:10.1039/C7CS00522A
  • Li S, Deng Q, Zhang Y, et al. Rational design of conjugated small molecules for superior photothermal theranostics in the NIR-II biowindow. Adv Mater. 2020;32(33):2001146. DOI:10.1002/adma.202001146
  • Facchetti A. π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater. 2011;23(3):733–758.
  • Dou L, Liu Y, Hong Z, et al. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem Rev. 2015;115(23):12633–12665. DOI:10.1021/acs.chemrev.5b00165
  • Ohshita J, Hwang Y-M, Mizumo T, et al. Synthesis of dithienogermole-containing π-conjugated polymers and applications to photovoltaic cells. Organometallics. 2011;30(12):3233–3236. DOI:10.1021/om200081b
  • Traina CA, Bakus RC, Bazan GC. Design and synthesis of monofunctionalized, water-soluble conjugated polymers for biosensing and imaging applications. J Am Chem Soc. 2011;133(32):12600–12607.
  • Feng X, Lv F, Liu L, et al. Conjugated polymer nanoparticles for drug delivery and imaging. ACS Appl Mater Interfaces. 2010;2(8):2429–2435. DOI:10.1021/am100435k
  • Wang Y, Feng L, Wang S. Conjugated polymer nanoparticles for imaging, cell activity regulation, and therapy. Adv Funct Mater. 2019;29(5):1806818.
  • Lyu Y, Tian J, Li J, et al. Semiconducting polymer nanobiocatalysts for photoactivation of intracellular redox reactions. Angew Chem Int Ed Engl. 2018;57(41):13484–13488. DOI:10.1002/anie.201806973
  • Sun H, Lv F, Liu L, et al. Conjugated polymer materials for photothermal therapy. Adv Ther. 2018;1(6):1800057. DOI:10.1002/adtp.201800057
  • Nguyen HT, Phung CD, Thapa RK, et al. Multifunctional nanoparticles as somatostatin receptor-targeting delivery system of polyaniline and methotrexate for combined chemo–photothermal therapy. Acta Biomater. 2018;68:154–167.
  • Wang X, Ma Y, Sheng X, et al. Ultrathin polypyrrole nanosheets via space-confined synthesis for efficient photothermal therapy in the second near-infrared window. Nano Lett. 2018;18(4):2217–2225. DOI:10.1021/acs.nanolett.7b04675
  • Poinard B, Neo SZY, Yeo ELL, et al. Polydopamine nanoparticles enhance drug release for combined photodynamic and photothermal therapy. ACS Appl Mater Interfaces. 2018;10(25):21125–21136. DOI:10.1021/acsami.8b04799
  • Cao S, Tong X, Dai K, et al. A super-stretchable and tough functionalized boron nitride/pedot:pss/poly(n-isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity. J Mater Chem A. 2019;7(14):8204–8209. DOI:10.1039/C9TA00618D
  • Cui L, Rao J. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes. Wires Nanomed Nanobi. 2017;9(2):e1418.
  • Gibson GL, McCormick TM, Seferos DS. Atomistic band gap engineering in donor–acceptor polymers. J Am Chem Soc. 2012;134(1):539–547.
  • Chen C-H, Hsieh C-H, Dubosc M, et al. Synthesis and characterization of bridged bithiophene-based conjugated polymers for photovoltaic applications: acceptor strength and ternary blends. Macromolecules. 2010;43(2):697–708. DOI:10.1021/ma902206u
  • Guo B, Sheng Z, Hu D, et al. Molecular engineering of conjugated polymers for biocompatible organic nanoparticles with highly efficient photoacoustic and photothermal performance in cancer theranostics. ACS Nano. 2017;11(10):10124–10134. DOI:10.1021/acsnano.7b04685
  • Jeon B, Kim T, Lee D, et al. Photothermal polymer nanocomposites of tungsten bronze nanorods with enhanced tensile elongation at low filler contents. Polymers. 2019;11(11):1740. DOI:10.3390/polym11111740
  • Lu L, Zheng T, Wu Q, et al. Recent advances in bulk heterojunction polymer solar cells. Chem Rev. 2015;115(23):12666–12731. DOI:10.1021/acs.chemrev.5b00098
  • Li J, Rao J, Pu K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials. 2018;155:217–235.
  • Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. 2015;44(14):4743–4768.
  • Lyu Y, Fang Y, Miao Q, et al. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano. 2016;10(4):4472–4481.
  • Ou H, Li J, Chen C, et al. Organic/polymer photothermal nanoagents for photoacoustic imaging and photothermal therapy in vivo. Sci China Mater. 2019;62(11):1740–1758.
  • Xie C, Upputuri PK, Zhen X, et al. Self-quenched semiconducting polymer nanoparticles for amplified in vivo photoacoustic imaging. Biomaterials. 2017;119:1–8.
  • Pu K, Mei J, Jokerst JV, et al. Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging. Advanced Materials. 2015. (1521-4095 (Electronic)).
  • Yoon J, Kwag J, Shin TJ, et al. Nanoparticles of conjugated polymers prepared from phase-separated films of phospholipids and polymers for biomedical applications. Adv Mater. 2014;26(26):4559–4564. DOI:10.1002/adma.201400906
  • Zeng J, Goldfeld D, Xia Y. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew Chem Int Ed. 2013;52(15):4169–4173.
  • Chen J, Wen K, Chen H, et al. Achieving high-performance photothermal and photodynamic effects upon combining D–A structure and nonplanar conformation. Small. 2020;16(17):2000909. DOI:10.1002/smll.202000909
  • Meng D, Yang S, Guo L, et al. The enhanced photothermal effect of graphene/conjugated polymer composites: photoinduced energy transfer and applications in photocontrolled switches. Chem Commun. 2014;50(92):14345–14348. DOI:10.1039/C4CC06849A
  • Singh RK, Kurian AG, Patel KD, et al. Label-free fluorescent mesoporous bioglass for drug delivery, optical triple-mode imaging, and photothermal/photodynamic synergistic cancer therapy. ACS Appl Bio Mater. 2020;3(4):2218–2229. DOI:10.1021/acsabm.0c00050
  • Tian Q, Jiang F, Zou R, et al. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano. 2011;5(12):9761–9771. DOI:10.1021/nn203293t
  • Xiao L, Sun J, Liu L, et al. Enhanced photothermal bactericidal activity of the reduced graphene oxide modified by cationic water-soluble conjugated polymer. ACS Appl Mater Interfaces. 2017;9(6):5382–5391. DOI:10.1021/acsami.6b14473
  • Breitenborn H, Dong J, Piccoli R, et al. Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation. APL Photonics. 2019;4(12):126106. DOI:10.1063/1.5128524
  • Merkl P, Zhou S, Zaganiaris A, et al. Plasmonic coupling in silver nanoparticle aggregates and their polymer composite films for near-infrared photothermal biofilm eradication. ACS Appl Nano Mater. 2021;4(5):5330–5339. DOI:10.1021/acsanm.1c00668
  • Urie R, McBride M, Ghosh D, et al. Antimicrobial laser-activated sealants for combating surgical site infections. Biomater Sci. 2021;9(10):3791–3803. DOI:10.1039/D0BM01438A
  • Kertesz M, Lee YS. Energy gap and bond length alternation in heterosubstituted narrow gap semiconducting polymers. J Phys Chem. 1987;91(11):2690–2692.
  • Kawabata K, Saito M, Osaka I, et al. Very small bandgap π-conjugated polymers with extended thienoquinoids. J Am Chem Soc. 2016;138(24):7725–7732. DOI:10.1021/jacs.6b03688
  • Wang Y, Zhu W, Du W, et al. Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging. Angew Chem Int Ed Engl. 2018;57(15):3963–3967. DOI:10.1002/anie.201712949
  • Bubnova O, Khan ZU, Wang H, et al. Semi-metallic polymers. Nat Mater. 2014;13(2):190–194. DOI:10.1038/nmat3824
  • Jain PK, Lee KS, El-Sayed IH, et al. calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110(14):7238–7248. DOI:10.1021/jp057170o
  • Lyu Y, Zeng J, Jiang Y, et al. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Nano. 2018;12(2):1801–1810. DOI:10.1021/acsnano.7b08616
  • Li D, Zhang G, Xu W, et al. Investigating the effect of chemical structure of semiconducting polymer nanoparticle on photothermal therapy and photoacoustic imaging. Theranostics. 2017;7(16):4029–4040. DOI:10.7150/thno.19538
  • Yuan L, Lu K, Xia B, et al. Acceptor end-capped oligomeric conjugated molecules with broadened absorption and enhanced extinction coefficients for high-efficiency organic solar cells. Adv Mater. 2016;28(28):5980–5985. DOI:10.1002/adma.201600512
  • Saltiel J, Zafiriou OC, Megarity ED, et al. Tests of the singlet mechanism for cis-trans photoisomerization of the stilbenes. J Am Chem Soc. 1968;90(17):4759–4760. DOI:10.1021/ja01019a063
  • Xue S, Qiu X, Sun Q, et al. Alkyl length effects on solid-state fluorescence and mechanochromic behavior of small organic luminophores. J Mater Chem C. 2016;4(8):1568–1578. DOI:10.1039/C5TC04358A
  • Chen X, Inganäs O. Three-step redox in polythiophenes: evidence from electrochemistry at an ultramicroele-ctrode. J Phys Chem. 1996;100(37):15202–15206.
  • Zhou J, Lu Z, Zhu X, et al. NIR photothermal therapy using polyaniline nanoparticles. Biomaterials. 2013;34(37):9584–9592. DOI:10.1016/j.biomaterials.2013.08.075
  • Di B, Meng Y, Wang YD, et al. Formation and evolution dynamics of bipolarons in conjugated polymers. J Phys Chem B. 2011;115(5):964–971. DOI:10.1021/jp110875b
  • MacNeill CM, Coffin RC, Carroll DL, et al. Low band gap donor-acceptor conjugated polymer nanoparticles and their NIR-mediated thermal ablation of cancer cells. Macromol Biosci. 2013;13(1):1. DOI:10.1002/mabi.201200241
  • Hedley GJ, Ruseckas A, Samuel IDW. Light harvesting for organic photovoltaics. Chem Rev. 2017;117(2):796–837.
  • Jana B, Ghosh A, Patra A. Photon harvesting in conjugated polymer-based functional nanoparticles. J Phys Chem Lett. 2017;8(18):4608–4620.
  • Jiang Y, McNeill J. Light-harvesting and amplified energy transfer in conjugated polymer nanoparticles. Chem Rev. 2017;117(2):838–859.
  • Kundu S, Patra A. Nanoscale strategies for light harvesting. Chem Rev. 2017;117(2):712–757.
  • Xie J, Gu P, Zhang Q. Nanostructured conjugated polymers: toward high-performance organic electrodes for rechargeable batteries. ACS Energy Lett. 2017;2(9):1985–1996.
  • Phillips RL, Miranda OR, You C-C, et al. Rapid and efficient identification of bacteria using gold-nanoparticle–poly(para-phenyleneethynylene) constructs. Angew Chem Int Ed Engl. 2008;47(14):2590–2594. DOI:10.1002/anie.200703369
  • Yin A, He Q, Lin Z, et al. Plasmonic/nonlinear optical material core/shell nanorods as nanoscale plasmon modulators and optical voltage sensors. Angew Chem Int Ed Engl. 2016;55(2):583–587. DOI:10.1002/anie.201508586
  • Wu C, Szymanski C, McNeill J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir. 2006;22(7):2956–2960.
  • Tan G, Kantner K, Zhang Q, et al. Conjugation of polymer-coated gold nanoparticles with antibodies-synthesis and characterization. Nanomaterials (Basel). 2015;5(3):1297–1316. DOI:10.3390/nano5031297
  • Marignier JL, Belloni J, Delcourt MO, et al. Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction. Nature. 1985;317(6035):344–345. DOI:10.1038/317344a0
  • Belloni J, Mostafavi M, Remita H, et al. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem. 1998;22(11):1239–1255. DOI:10.1039/a801445k
  • Fofang NT, Park T-H, Neumann O, et al. Plexcitonic nanoparticles: plasmon−exciton coupling in nanoshell−j-aggregate complexes. Nano Lett. 2008;8(10):3481–3487. DOI:10.1021/nl8024278
  • Park JH, Lim YT, Park OO, et al. Enhancement of photostability in blue-light-emitting polymers doped with gold nanoparticles. Macromol Rapid Commun. 2003;24(4):331–334. DOI:10.1002/marc.200390051
  • Sih BC, Wolf MO. Metal nanoparticle—conjugated polymer nanocomposites. ChemComm. 2005;27(27):3375–3384.
  • Vijayakumar C, Balan B, Saeki A, et al. Gold nanoparticle assisted self-assembly and enhancement of charge carrier mobilities of a conjugated polymer. J Phys Chem C. 2012;116(33):17343–17350. DOI:10.1021/jp3039253
  • Du C, Wang A, Fei J, et al. Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy. J Mater Chem B. 2015;3(22):4539–4545. DOI:10.1039/C5TB00560D
  • Jiang N, Shao L, Wang J. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. Adv Mater. 2014;26(20):3282–3289.
  • Liu S, Wang L, Lin M, et al. Cu(ii)-doped polydopamine-coated gold nanorods for tumor theranostics. ACS Appl Mater Interfaces. 2017;9(51):44293–44306. DOI:10.1021/acsami.7b13643
  • Ge R, Lin M, Li X, et al. Cu2±loaded polydopamine nanoparticles for magnetic resonance imaging-guided PH- and near-infrared-light-stimulated thermochemotherapy. ACS Appl Mater Interfaces. 2017;9(23):19706–19716. DOI:10.1021/acsami.7b05583
  • Li J, Han J, Xu T, et al. Coating urchin like gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency. Langmuir. 2013;29(23):7102–7110. DOI:10.1021/la401366c
  • Wang L, Meng D, Hao Y, et al. A gold nanostar based multi-functional tumor-targeting nanoplatform for tumor theranostic applications. J Mater Chem B. 2016;4(35):5895–5906. DOI:10.1039/C6TB01304J
  • Jeon J-W, Ledin PA, Geldmeier JA, et al. Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures: transparent plasmonic aggregates. Chem Mater. 2016;28(8):2868–2881. DOI:10.1021/acs.chemmater.6b00882
  • Zhang X, Xu X, Li T, et al. Composite photothermal platform of polypyrrole-enveloped Fe(3)O(4) nanoparticle self-assembled superstructures. ACS Appl Mater Interfaces. 2014;6(16):14552–14561. DOI:10.1021/am503831m
  • Ge R, Li X, Lin M, et al. Fe3o4@polydopamine composite theranostic superparticles employing preassembled Fe3O4 nanoparticles as the core. ACS Appl Mater Interfaces. 2016;8(35):22942–22952. DOI:10.1021/acsami.6b07997
  • Guo W, Wang F, Ding D, et al. TiO2–x based nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy. Chem Mater. 2017;29(21):9262–9274. DOI:10.1021/acs.chemmater.7b03241
  • Jin Y, Li Y, Ma X, et al. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials. 2014;35(22):5795–5804. DOI:10.1016/j.biomaterials.2014.03.086
  • Liu X, Swihart MT. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev. 2014;43(11):3908–3920.
  • Wei T, Liu Y, Dong W, et al. Surface-dependent localized surface plasmon resonances in CuS nanodisks. ACS Appl Mater Interfaces. 2013;5(21):10473–10477. DOI:10.1021/am4039568
  • Li Z, Hu Y, Howard KA, et al. Multifunctional bismuth selenide nanocomposites for antitumor thermo-chemotherapy and imaging. ACS Nano. 2016;10(1):984–997. DOI:10.1021/acsnano.5b06259
  • Wang C, Bai J, Liu Y, et al. Polydopamine coated selenide molybdenum: a new photothermal nanocarrier for highly effective chemo-photothermal synergistic therapy. ACS Biomater Sci Eng. 2016;2(11):2011–2017. DOI:10.1021/acsbiomaterials.6b00416
  • Zhang H, Chen X, Li S, et al. An enhanced photothermal therapeutic iridium hybrid platform reversing the tumor hypoxic microenvironment. Molecules. 2022;27(9):2629. DOI:10.3390/molecules27092629
  • Qin XC, Guo ZY, Liu ZM, et al. Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. J Photochem Photobiol B. 2013;120:156–162.
  • Chen Y-W, Su Y-L, Hu S-H, et al. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv Drug Deliv Rev. 2016;105:190–204.
  • Kim SH, Lee JE, Sharker SM, et al. In vitro and in vivo tumor targeted photothermal cancer therapy using functionalized graphene nanoparticles. Biomacromolecules. 2015;16(11):3519–3529. DOI:10.1021/acs.biomac.5b00944
  • Qian W, Yan C, He D, et al. pH-triggered charge-reversible of glycol chitosan conjugated carboxyl graphene for enhancing photothermal ablation of focal infection. Acta Biomater. 2018;69:256–264.
  • Xu J-W, Yao K, Xu Z-K. Nanomaterials with a photothermal effect for antibacterial activities: an overview. Nanoscale. 2019;11(18):8680–8691.
  • Li D, Gao D, Qi J, et al. Conjugated polymer/graphene oxide complexes for photothermal activation of DNA unzipping and binding to protein. ACS Appl Bio Mater. 2018;1(1):146–152. DOI:10.1021/acsabm.8b00047
  • Cai X, Ozawa TC, Funatsu A, et al. Tuning the surface charge of 2D oxide nanosheets and the bulk-scale production of superlatticelike composites. J Am Chem Soc. 2015;137(8):2844–2847. DOI:10.1021/jacs.5b00317
  • Singh M, Holzinger M, Tabrizian M, et al. Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors. J Am Chem Soc. 2015;137(8):2800–2803. DOI:10.1021/ja511512m
  • Meng D, Yang S, Sun D, et al. A dual-fluorescent composite of graphene oxide and poly(3-hexylthiophene) enables the ratiometric detection of amines. Chem Sci. 2014;5(8):3130–3134. DOI:10.1039/c4sc00598h
  • Hou W, Zhao N-J, Meng D, et al. Controlled growth of well-defined conjugated polymers from the surfaces of multiwalled carbon nanotubes: photoresponse enhancement via charge separation. ACS Nano. 2016;10(5):5189–5198. DOI:10.1021/acsnano.6b00673
  • McGrail BT, Rodier BJ, Pentzer E. Rapid functionalization of graphene oxide in water. Chem Mater. 2014;26(19):5806–5811.
  • Mohammadi Sejoubsari R, Martinez AP, Kutes Y, et al. “Grafting-through”: growing polymer brushes by supplying monomers through the surface. Macromolecules. 2016;49(7):2477–2483. DOI:10.1021/acs.macromol.6b00183
  • Yu D, Yang Y, Durstock M, et al. Soluble P3HT-grafted graphene for efficient bilayer−heterojunction photovoltaic devices. ACS Nano. 2010;4(10):5633–5640. DOI:10.1021/nn101671t
  • Sun J, Xiao L, Meng D, et al. Enhanced photoresponse of large-sized photoactive graphene composite films based on water-soluble conjugated polymers. Chem Commun. 2013;49(49):5538–5540. DOI:10.1039/c3cc40563j
  • Kelkar SS, McCabe-Lankford E, Albright R, et al. Dual wavelength stimulation of polymeric nanoparticles for photothermal therapy. Lasers Surg Med. 2016;48(9):893–902. DOI:10.1002/lsm.22583
  • Jiang Y, Li J, Zhen X, et al. Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study. Adv Mater. 2018;30(14):1705980. DOI:10.1002/adma.201705980
  • Long Z, Dai J, Hu Q, et al. Nanococktail based on aiegens and semiconducting polymers: a single laser excited image-guided dual photothermal therapy. Theranostics. 2020;10(5):2260–2272. DOI:10.7150/thno.41317
  • Hu D, Sheng Z, Zhu M, et al. Förster resonance energy transfer-based dual-modal theranostic nanoprobe for in situ visualization of cancer photothermal therapy. Theranostics. 2018;8(2):410–422. DOI:10.7150/thno.22226
  • Long Z, Hu J-J, Yuan L, et al. A cell membrane-anchored nanoassembly with self-reporting property for enhanced second near-infrared photothermal therapy. Nano Today. 2021:41. DOI:10.1016/j.nantod.2021.101312.
  • Jiang Y, Cui D, Fang Y, et al. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials. 2017;145:168–177.
  • Chen P, Ma Y, Zheng Z, et al. Facile syntheses of conjugated polymers for photothermal tumour therapy. Nat Commun. 2019;10(1):1192. DOI:10.1038/s41467-019-09226-6
  • Jin X, Xing X, Deng Q, et al. Molecular engineering of diketopyrrolopyrrole-conjugated polymer nanoparticles by chalcogenide variation for photoacoustic imaging guided photothermal therapy. J Mater Chem B. 2021;9(14):3153–3160. DOI:10.1039/D1TB00193K
  • Jiang Y, Duan X, Bai J, et al. Polymerization-induced photothermy: a non-donor-acceptor approach to highly effective near-infrared photothermal conversion nanoparticles. Biomaterials. 2020;255:120179.
  • Vezie MS, Few S, Meager I, et al. Exploring the origin of high optical absorption in conjugated polymers. Nat Mater. 2016;15(7):746–753. DOI:10.1038/nmat4645
  • Schwartz BJ. Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions. Annu Rev Phys Chem. 2003;54(1):141–172.
  • Miao Q, Xie C, Zhen X, et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nature Biotechnology. 2017;35(11):1102–1110. DOI:10.1038/nbt.3987
  • Dong T, Wen K, Chen J, et al. Significant enhancement of photothermal and photoacoustic efficiencies for semiconducting polymer nanoparticles through simply molecular engineering. Adv Funct Mater. 2018;28(23):23. DOI:10.1002/adfm.201800135
  • Lu C, Chen H-C, Chuang W-T, et al. Interplay of molecular orientation, film formation, and optoelectronic properties on isoindigo- and thienoisoindigo-based copolymers for organic field effect transistor and organic photovoltaic applications. Chem Mater. 2015;27(19):6837–6847. DOI:10.1021/acs.chemmater.5b03197
  • Hodgkiss JM, Tu G, Albert-Seifried S, et al. Ion-induced formation of charge-transfer states in conjugated polyelectrolytes. J Am Chem Soc. 2009;131(25):8913–8921. DOI:10.1021/ja902167a
  • Pandey L, Risko C, Norton JE, et al. Donor–acceptor copolymers of relevance for organic photovoltaics: a theoretical investigation of the impact of chemical structure modifications on the electronic and optical properties. Macromolecules. 2012;45(16):6405–6414. DOI:10.1021/ma301164e
  • Xu Y-X, Chueh C-C, Yip H-L, et al. Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2-b]thiophene-based Ladder-Type Polymer Leading to Highly Efficient Polymer Solar Cells. Adv Mater. 2012;24(47):6356–6361. DOI:10.1002/adma.201203246
  • Mondal R, Ko S, Norton JE, et al. Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering. J Mater Chem. 2009;19(39):7195–7197. DOI:10.1039/b915222a
  • Zhang S, Sun C, Zeng J, et al. Ambient aqueous synthesis of ultrasmall PEGylated Cu2−xSe nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer. Adv Mater. 2016;28(40):8927–8936. DOI:10.1002/adma.201602193
  • Lyu Y, Xie C, Chechetka SA, et al. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J Am Chem Soc. 2016;138(29):9049–9052. DOI:10.1021/jacs.6b05192
  • Yang K, Zhang S, Zhang G, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010;10(9):3318–3323. DOI:10.1021/nl100996u
  • Duan X, Zhang Q, Jiang Y, et al. Semiconducting polymer nanoparticles with intramolecular motion-induced photothermy for tumor phototheranostics and tooth root canal therapy. Adv Mater. 2022;34(17):e2200179. DOI:10.1002/adma.202200179
  • Li C, Luo Z, Yang L, et al. Self-assembled porphyrin polymer nanoparticles with NIR-II emission and highly efficient photothermal performance in cancer therapy. Mater Today Bio. 2022;13:100198.
  • Chao YH, Jheng JF, Wu JS, et al. Porphyrin-incorporated 2D D-A polymers with over 8.5% polymer solar cell efficiency. Adv Mater. 2014;26(30):5205–5210. DOI:10.1002/adma.201401345
  • Li D-D, Wang J-X, Ma Y, et al. A donor–acceptor conjugated polymer with alternating isoindigo derivative and bithiophene units for near-infrared modulated cancer thermo-chemotherapy. ACS Appl Mater Interfaces. 2016;8(30):19312–19320. DOI:10.1021/acsami.6b05495
  • Zhang J, Chen W, Kalytchuk S, et al. Self-assembly of electron donor–acceptor-based carbazole derivatives: novel fluorescent organic nanoprobes for both one- and two-photon cellular imaging. ACS Appl Mater Interfaces. 2016;8(18):11355–11365. DOI:10.1021/acsami.6b03259
  • Zhang J, Yang C, Zhang R, et al. Biocompatible D-A semiconducting polymer nanoparticle with light-harvesting unit for highly effective photoacoustic imaging guided photothermal therapy. Adv Funct Mater. 2017;27(13):13. DOI:10.1002/adfm.201605094
  • Zhang C, Wang K, Guo X, et al. A cationic conjugated polymer with high 808 nm NIR-triggered photothermal conversion for antibacterial treatment. J Mater Chem C. 2022;10(7):2600–2607. DOI:10.1039/D1TC03128G
  • Li J, Li S, Yang S, et al. Semiconductor polymer with strong nir-ii absorption for photoacoustic imaging and photothermal therapy. ACS Appl Bio Mater. 2022;5(5):2224–2231. DOI:10.1021/acsabm.2c00080
  • Liu F, Ma F, Chen Q, et al. Synergistic non-bonding interactions based on diketopyrrolo-pyrrole for elevated photoacoustic imaging-guided photothermal therapy. Biomater Sci. 2021;9(3):908–916. DOI:10.1039/D0BM01569E
  • Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev. 2019;48(1):38–71.
  • Yu D, Wang Y, Chen J, et al. Co-delivery of NIR-II semiconducting polymer and pH-sensitive doxorubicin-conjugated prodrug for photothermal/chemotherapy. Acta Biomater. 2022;137:238–251.
  • Zhou H, Lu Z, Zhang Y, et al. Simultaneous enhancement of the long-wavelength NIR-II brightness and photothermal performance of semiconducting polymer nanoparticles. ACS Appl Mater Interfaces. 2022;14(7):8705–8717. DOI:10.1021/acsami.1c20722
  • Chen H, Zhang J, Chang K, et al. Highly absorbing multispectral near-infrared polymer nanoparticles from one conjugated backbone for photoacoustic imaging and photothermal therapy. Biomaterials. 2017;144:42–52.
  • Kline RJ, McGehee MD, Kadnikova EN, et al. Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater. 2003;15(18):1519–1522. DOI:10.1002/adma.200305275
  • Koch FPV, Rivnay J, Foster S, et al. The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Prog Polym Sci. 2013;38(12):1978–1989. DOI:10.1016/j.progpolymsci.2013.07.009
  • Tsao HN, Cho DM, Park I, et al. Ultrahigh mobility in polymer field-effect transistors by design. J Am Chem Soc. 2011;133(8):2605–2612. DOI:10.1021/ja108861q
  • Zhang W, Smith J, Watkins SE, et al. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J Am Chem Soc. 2010;132(33):11437– 11439. DOI:10.1021/ja1049324
  • Kim M, Ryu SU, Park SA, et al. Donor–acceptor‐conjugated polymer for high‐performance organic field‐effect transistors: a progress report. Adv Funct Mater. 2019;30:20.
  • Robinson JT, Tabakman SM, Liang Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc. 2011;133(17):6825–6831. DOI:10.1021/ja2010175
  • Wei Z, Xin F, Zhang J, et al. Donor-acceptor conjugated polymer-based nanoparticles for highly effective photoacoustic imaging and photothermal therapy in the NIR-II window. Chem Commun (Camb). 2020;56(7):1093–1096. DOI:10.1039/C9CC07821E
  • Cai Y, Wei Z, Song C, et al. Optical nano-agents in the second near-infrared window for biomedical applications. Chem Soc Rev. 2019;48(1):22–37. DOI:10.1039/C8CS00494C
  • Yang Q, Hu Z, Zhu S, et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J Am Chem Soc. 2018;140(5):1715–1724. DOI:10.1021/jacs.7b10334
  • Liu X, Shen W, He R, et al. Strategy to modulate the electron-rich units in donor–acceptor copolymers for improvements of organic photovoltaics. J Phys Chem C. 2014;118(31):17266–17278. DOI:10.1021/jp503248a
  • Wei Z, Xue F, Xin F, et al. A thieno-isoindigo derivative-based conjugated polymer nanoparticle for photothermal therapy in the NIR-II bio-window. Nanoscale. 2020;12(38):19665–19672. DOI:10.1039/D0NR03771K
  • Zou Q-O, Abbas M, Zhao L, et al. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy. J Am Chem Soc. 2017;139(5):1921–1927. DOI:10.1021/jacs.6b11382
  • Zhang W, Sun X, Huang T, et al. 1300 nm absorption two-acceptor semiconducting polymer nanoparticles for NIR-II photoacoustic imaging system guided NIR-II photothermal therapy. Chem Commun (Camb). 2019;55(64):9487–9490. DOI:10.1039/C9CC04196F
  • Liu C, Wang K, Gong X, et al. Low bandgap semiconducting polymers for polymeric photovoltaics. Chem Soc Rev. 2016;45(17):4825–4846. DOI:10.1039/C5CS00650C
  • Shibu ES, Hamada M, Murase N, et al. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J Photochem Photobiol C Photochem Rev. 2013;15:53–72.
  • Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res. 2008;41(12):1842–1851.
  • Li X-F, O’Donoghue JA. Hypoxia in microscopic tumors. Cancer Lett. 2008;264(2):172–180.
  • Wu W, Feng G, Xu S, et al. A photostable far-red/near-infrared conjugated polymer photosensitizer with aggregation-induced emission for image-guided cancer cell ablation. Macromolecules. 2016;49(14):5017–5025. DOI:10.1021/acs.macromol.6b00958
  • Wu W. High-performance conjugated polymer photosensitizers. Chem. 2018;4(8):1762–1764.
  • Wu W, Mao D, Xu S, et al. Polymerization-enhanced photosensitization. Chem. 2018;4(8):1937–1951. DOI:10.1016/j.chempr.2018.06.003
  • Feng G, Wu W, Xu S, et al. Far red/near-Infrared AIE dots for image-guided photodynamic cancer cell ablation. ACS Appl Mater Interfaces. 2016;8(33):21193–21200. DOI:10.1021/acsami.6b06136
  • Liu S, Zhang H, Li Y, et al. Strategies to enhance the photosensitization: polymerization and the donor–acceptor even–odd effect. Angew Chem Int Ed. 2018;57(46):15189–15193. DOI:10.1002/anie.201810326
  • Zhou W, Chen Y, Zhang Y, et al. Iodine-rich semiconducting polymer nanoparticles for ct/fluorescence dual-modal imaging-guided enhanced photodynamic therapy. Small. 2020;16(5):e1905641. DOI:10.1002/smll.201905641
  • Zhu H, Li J, Qi X, et al. Oxygenic hybrid semiconducting nanoparticles for enhanced photodynamic therapy. Nano Lett. 2018;18(1):586–594. DOI:10.1021/acs.nanolett.7b04759
  • Zhu H, Fang Y, Miao Q, et al. Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano. 2017;11(9):8998–9009. DOI:10.1021/acsnano.7b03507
  • Yang T, Liu L, Deng Y, et al. Ultrastable near-infrared conjugated-polymer nanoparticles for dually photoactive tumor inhibition. Adv Mater. 2017;29:31.
  • Ng KK, Zheng G. Molecular interactions in organic nanoparticles for phototheranostic applications. Chem Rev. 2015;115(19):11012–11042.
  • Yang Y, Fan X, Li L, et al. Semiconducting polymer nanoparticles as theranostic system for near-infrared-II fluorescence imaging and photothermal therapy under safe laser fluence. ACS Nano. 2020;14(2):2509–2521. DOI:10.1021/acsnano.0c00043
  • Song X, Lu X, Sun B, et al. Conjugated polymer nanoparticles with absorption beyond 1000 nm for NIR-II fluorescence imaging system guided nir-ii photothermal therapy. ACS Appl Polym. 2020;2(10):4171–4179. DOI:10.1021/acsapm.0c00637
  • Lu X, Chen J, Li J, et al. Single nanoparticles as versatile phototheranostics for tri-modal imaging-guided photothermal therapy. Biomater Sci. 2019;7(9):3609–3613. DOI:10.1039/C9BM00997C
  • Li J, Jiang R, Wang Q, et al. Semiconducting polymer nanotheranostics for NIR-II/Photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy. Biomaterials. 2019;217:119304.
  • Hu X, Tang Y, Hu Y, et al. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics. 2019;9(14):4168–4181. DOI:10.7150/thno.34390
  • Ruan C, Liu C, Hu H, et al. NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy. Chem Sci. 2019;10(17):4699–4706. DOI:10.1039/C9SC00375D
  • McCarthy B, Cudykier A, Singh R, et al. Semiconducting polymer nanoparticles for photothermal ablation of colorectal cancer organoids. Sci Rep. 2021;11(1):1532. DOI:10.1038/s41598-021-81122-w
  • Li D, Zhang C, Tai X, et al. 1064 nm activatable semiconducting polymer-based nanoplatform for NIR-II fluorescence/nir-II photoacoustic imaging guided photothermal therapy of orthotopic osteosarcoma. Chem Eng J. 2022;445:136836.
  • Yin C, Tai X, Li X, et al. Side chain engineering of semiconducting polymers for improved NIR-II fluorescence imaging and photothermal therapy. Chem Eng J. 2022;428:428. DOI:10.1016/j.cej.2021.132098
  • Chen Y, Sun B, Jiang X, et al. Double-acceptor conjugated polymers for NIR-II fluorescence imaging and NIR-II photothermal therapy applications. J Mater Chem B. 2021;9(4):1002–1008. DOI:10.1039/D0TB02499F
  • Natali M, Campagna S, Scandola F. Photoinduced electron transfer across molecular bridges: electron- and hole-transfer superexchange pathways. Chem Soc Rev. 2014;43(12):4005–4018.
  • Stennett EMS, Ciuba MA, Levitus M. Photophysical processes in single molecule organic fluorescent probes. Chem Soc Rev. 2014;43(4):1057–1075.
  • Guo L, Liu W, Niu G, et al. Polymer nanoparticles with high photothermal conversion efficiency as robust photoacoustic and thermal theranostics. J Mater Chem B. 2017;5(15):2832–2839. DOI:10.1039/C7TB00498B
  • Geng J, Sun C, Liu J, et al. Biocompatible conjugated polymer nanoparticles for efficient photothermal tumor therapy. Small. 2015;11(13):1603–1610. DOI:10.1002/smll.201402092
  • Chu Y, Liao S, Liao H, et al. Second near-infrared photothermal therapy with superior penetrability through skin tissues. CCS Chem. 2022;4(9):3002–3013. DOI:10.31635/ccschem.021.202101539
  • Long Q, Xi W, Chen Y, et al. Biometabolizable conjugated polymers for photothermal therapy under the guidance of dual-modal imaging of prostate cancer. ACS Appl Polym Mater. 2022;4(6):4355–4363. DOI:10.1021/acsapm.2c00326
  • Wang F, Men X, Chen H, et al. Second near-infrared photoactivatable biocompatible polymer nanoparticles for effective in vitro and in vivo cancer theranostics. Nanoscale. 2021;13(31):13410–13420. DOI:10.1039/D1NR03156B
  • Zhang H, Tian S, Li M, et al. Novel donor-acceptor conjugated polymer-based nanomicelles for photothermal therapy in the NIR window. Biomacromolecules. 2022;23(8):3243–3256. DOI:10.1021/acs.biomac.2c00330
  • Li X, Liu L, Li S-O, et al., Biodegradable π-conjugated oligomer nanoparticles with high photothermal conversion efficiency for cancer theranostics. ACS Nano (1936-086X (Electronic)).
  • Men X, Wang F, Chen H, et al. Ultrasmall semiconducting polymer dots with rapid clearance for second near‐infrared photoacoustic imaging and photothermal cancer therapy. Adv Funct Mater. 2020;30:24.