1,335
Views
3
CrossRef citations to date
0
Altmetric
Engineering and structural materials

Kink-band formation in the directionally-solidified Mg/LPSO two-phase alloys

, , , , , , , & show all
Pages 752-766 | Received 09 Aug 2022, Accepted 13 Oct 2022, Published online: 03 Nov 2022

References

  • Pan F, Yang M, Chen X. A review on casting magnesium alloys modification of commercial alloys and development of new alloys. J Mater Sci Technol. 2016;32(12):1211–1221.
  • Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2Alloys with excellent tensile yield strength above 600 MPa. Mater Trans. 2001;42(7):1172–1176. DOI:10.2320/matertrans.42.1172
  • Hagihara K, Kinoshita A, Sugino Y, et al. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Mater. 2010;58(19):6282–6293. DOI:10.1016/j.actamat.2010.07.050
  • Hagihara K, Kinoshita A, Sugino Y, et al. Plastic deformation behavior of Mg89Zn4Y7 extruded alloy composed of long-period stacking ordered phase. Intermetallics. 2010;18(5):1079–1085. DOI:10.1016/j.intermet.2010.02.011
  • Yamasaki M, Hashimoto K, Hagihara K, et al. Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy. Acta Mater. 2011;59(9):3646–3658. DOI:10.1016/j.actamat.2011.02.038
  • Oñorbe E, Garcés G, Pérez P, et al. Effect of the LPSO volume fraction on the microstructure and mechanical properties of Mg–Y2X–ZnX alloys. J Mater Sci. 2012;47(2):1085–1093. DOI:10.1007/s10853-011-5899-4
  • Wang J, Song P, Zhou X, et al. Influence of the morphology of long-period stacking ordered phase on the mechanical properties of as-extruded Mg–5Zn–5Y–0.6Zr magnesium alloy. Mater Sci Eng A. 2012;556:68–75.
  • Hagihara K, Kinoshita A, Fukusumi Y, et al. High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing a long-period stacking ordered (LPSO) phase. Mater Sci Eng A. 2013;560:71–79.
  • Oñorbe E, Garcés G, Dobes F, et al. High-temperature mechanical behavior of extruded Mg-Y-Zn alloy containing LPSO phases. Metall Mater Trans A. 2013;44(6):2869–2883. DOI:10.1007/s11661-013-1628-8
  • Tong LB, Li XH, Zhang HJ. Effect of long period stacking ordered phase on the microstructure, texture and mechanical properties of extruded Mg–Y–Zn alloy. Mater Sci Eng A. 2013;563:177–183.
  • Garces G, Perez P, Cabeza S, et al. Reverse tension/compression asymmetry of a Mg-Y-Zn alloys containing LPSO phases. Mater Sci Eng A. 2015;647:287–293.
  • Kim JK, Sandlöbes S, Raabe D. On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking-ordered structures. Acta Mater. 2015;82:414–423.
  • Liu H, Bai J, Yan K, et al. Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg-Y-Zn alloys during annealing at 773 K. Mater Des. 2016;93:9–18.
  • Chen R, Sandlöbes S, Zeng X, et al. Room temperature deformation of LPSO structures by non-basal slip. Mater Sci Eng A. 2017;682:354–358.
  • Garcés G, Máthis K, Medina J, et al. Combination of in-situ diffraction experiments and acoustic emission testing to understand the compression behavior of Mg-Y-Zn alloys containing LPSO phase under different loading conditions. Int J Plast. 2018;106:107–128.
  • Wu SZ, Qiao XG, Qin SH, et al. Improved strength in wrought Mg–Y–Ni alloys by adjusting the block-shaped LPSO phase and plate-shaped γ′ phase. Mater Sci Eng A. 2022;831:142198.
  • Zhao D, Zhao C, Chen X, et al. Compressive deformation of as-extruded LPSO-containing Mg alloys at different temperatures. J Mater Res Technol. 2022;16:944–9591.
  • Fekete K, Farkas G, Drozdenko D, et al. The temperature effect on the plastic deformation of the Mg88Zn7Y5 alloy with LPSO phase studied by in-situ synchrotron radiation diffraction. Intermetallics. 2021;138:107321.
  • Zhou X, Xiong W, Zeng G, et al. Combined effects of LPSO orientation and α-Mg texture on tensile anisotropy of an extruded Mg-Gd-Y-Zn-Zr alloy. Mater Sci Eng A. 2021;805:140596.
  • Hagihara K. Surprising increase in yield stress of Mg single crystal using long-period stacking ordered nanoplates. Acta Mater. 2021;209:102004.
  • Mayama T, Agnew SR, Hagihara K, et al. α-Mg/LPSO (long-period stacking ordered) phase interfaces as obstacles against dislocation slip in as-cast Mg-Zn-Y alloys. Int J Plast. 2022;154:103294.
  • Hagihara K, Yokotani N, Umakoshi Y. Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure. Intermetallics. 2010;18(2):267–276.
  • Hagihara K, Sugino Y, Fukusumi Y, et al. Plastic deformation behavior of Mg12ZnY LPSO-phase with 14H-typed structure. Mater Trans. 2011;52(6):1096–1103. DOI:10.2320/matertrans.MC201007
  • Hagihara K, Okamoto T, Izuno H, et al. Plastic deformation behavior of 10H-type synchronized LPSO phase in a Mg-Zn-Y system. Acta Mater. 2016;109:90–102.
  • Abe E, Ono A, Itoi T, et al. Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg–Zn–Y alloy. Philo Mag Lett. 2011;91(10):690–696. DOI:10.1080/09500839.2011.609149
  • Hagihara K, Li Z, Yamasaki M, et al. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys. Acta Mater. 2019;163:226–239.
  • Hagihara K, Yamasaki M, Kawamura Y, et al. Strengthening of Mg-based long-period stacking ordered (LPSO) phase with deformation kink bands. Mater Sci Eng A. 2019;763:138163.
  • Li CQ, Xu DK, Zeng ZR, et al. Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys. Mater Des. 2017;121:430–4415.
  • Drozdenko D, Farkas G, Šimko P, et al. Influence of volume fraction of long-period stacking ordered structure phase on the deformation processes during cyclic deformation of Mg-Y-Zn alloys. Crystals. 2021;11(1):1–14. DOI:10.3390/cryst11010011
  • Briffod F, Shiraiwa T, Enoki M. The effect of the 18R-LPSO phase on the fatigue behavior of extruded Mg/LPSO two-phase alloy through a comparative experimental-numerical study. J Magnesium Alloys. 2021;9(1):130–143.
  • Yin W, Briffod F, Shiraiwa T, et al. Mechanical properties and failure mechanisms of Mg-Zn-Y alloys with different extrusion ratio and LPSO volume fraction. J Magnesium Alloys. 2022;10(8):2158–2172. DOI:10.1016/j.jma.2022.02.004
  • Okayasu M, Takeuchi S, Matsushita M, et al. Mechanical properties and failure characteristics of cast and extruded Mg97Y2Zn1 alloys with LPSO phase. Mater Sci Eng A. 2016;652:14–29.
  • Peng Q, Guo J, Fu H, et al. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases. Sci Rep. 2014;4(1):3620. DOI:10.1038/srep03620
  • Yamasaki M, Matsushita M, Hagihara K, et al. Highly ordered 10H-type long-period stacking order phase in a Mg-Zn-Y ternary alloy. Scr Mater. 2014;78-79:13–16.
  • Yoshimoto S, Yamasaki M, Kawamura Y. Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure. Mater Trans. 2006;47(4):959–965.
  • Hess JB, Barrett CS. Structure and nature of kink bands in zinc. Trans Am Inst Min Met Eng. 1949;1(9):599–606.
  • Barsoum MW, El-Raghy T. Room temperature ductile carbides. Metall Mater Trans A. 1999;30A(2):363–369.
  • Yamasaki M, Hagihara K, Inoue S, et al. Crystallographic classification of kink bands in an extruded Mg–Zn–Y alloy using intragranular misorientation axis analysis. Acta Mater. 2013;61(6):2065–2076. DOI:10.1016/j.actamat.2012.12.026
  • Hagihara K, Yamasaki M, Honnami M, et al. Crystallographic nature of deformation bands shown in Zn and Mg-based long period stacking ordered (LPSO) phase. Philos Mag. 2015;95(2):132–157. DOI:10.1080/14786435.2014.987843
  • Hagihara K, Okamoto T, Yamasaki M, et al. Electron backscatter diffraction pattern analysis of the deformation band formed in the Mg-based long-period stacking ordered phase. Scr Mater. 2016;117:32–36.
  • Yamasaki S, Tokuzumi T, Li W, et al. Kink formation process in long-period stacking ordered Mg-Zn-Y alloy. Acta Mater. 2020;195:25–34.
  • Miura S, Imagawa S, Toyoda T, et al. Effect of rare-earth elements Y and Dy on the deformation behavior of Mg alloy single crystals. Mater Trans. 2008;49(5):952–956. DOI:10.2320/matertrans.MC2007109
  • Inoue A, Kishida K, Inui H, et al. Compression of micro-pillars of a long period stacking ordered phase in the Mg-Zn-Y system. Mater Res Soc Symp Proc. 2013;1516:151–156.
  • Barsoum MW, Zhen T, Zhou A, et al. Microscale modeling of kinking nonlinear elastic solids. Phys Rev B. 2005;71(13):134101. DOI:10.1103/PhysRevB.71.134101
  • Zhen T, Barsoum MW, Kalidindi SR. Effects of temperature, strain rate and grain size on the compressive properties of Ti3SiC2. Acta Mater. 2005;53(15):4163–4171.
  • Zhou AG, Barsoum MW. Kinking nonlinear elastic deformation of Ti3AlC2, Ti2AlC, Ti3Al(C0.5,N0.5)2 and Ti2Al(C0.5,N0.5). J Alloy Compd. 2010;498(1):62–70.
  • Frank FC, Stroh AN. On the theory of kinking. Proc Phys Soc B. 1952;65(10):811–821.
  • Hagihara K, Honnami M, Matsumoto R, et al. In-situ observation on the formation behavior of the deformation kink bands in Zn single crystal and LPSO phase. Mater Trans. 2015;56(7):943–951. DOI:10.2320/matertrans.MH201412
  • Hagihara K, Mayama T, Honnami M, et al. Orientation dependence of the deformation kink band formation behavior in Zn single crystals. Inter J Plast. 2016;77:174–191.
  • Yue AS, Crossman FW, Vidoz AE, et al. Controlled microstructures of Al-CuAl2 eutectic composites and their compressive properties. Trans Metall Soc AIME. 1968;242:2441–2452.
  • Pattnaik A, Lawley A. Deformation and fracture in Al−CuAl2 eutectic composites. Metall Trans. 1971;2(6):1529–1536.
  • Shaw BJ. Room temperature mechanical properties of cadmium-zinc lamellar eutectic alloys. Acta Metall. 1967;15(7):1169–1177.
  • Davidson CJ, Smith LO. The metallography and deformation of the aligned Cd-Zn eutectic. J Mater Sci. 1983;18(3):930–942.
  • Nizolek TJ, Begley MR, McCabe RJ, et al. Strain fields induced by kink band propagation in Cu-Nb nanolaminate composites. Acta Mater. 2017;133:303–315.
  • Hagihara K, Tokunaga T, Nishiura K, et al. Control of kink-band formation in mille-feuille structured Al/Al2Cu eutectic alloys. Mater Sci Eng A. 2021;825:141849.
  • Hagihara K, Miyoshi K. Kink-band formation in directionally solidified Mg/Mg2Yb and Mg/Mg2Ca eutectic alloys with Mg/Laves-phase lamellar microstructure. J Magnesium Alloys. 2022;10(2):492–500.
  • Hagihara K, Tokunaga T, Ohsawa S, et al. Microstructural factors governing the significant strengthening of Al/Al2Cu mille-feuille structured alloys accompanied by kink-band formation. Inter J Plast. 2022;158:103294.
  • Hagihara K, Hayakawa K, Miyoshi K. Inducement of kink-band formation in directionally solidified Mg/Mg17Al12 eutectic alloy - Inspired by the deformation behavior of the long-period stacking ordered (LPSO) phase. Mater Sci Eng A. 2020;798:140087.
  • Hagihara K, Ueyama R, Tokunaga T, et al. Quantitative estimation of kink-band strengthening in an Mg–Zn–Y single crystal with LPSO nanoplates. Mater Res Lett. 2021;9(11):467–474. DOI:10.1080/21663831.2021.1974593
  • Hagihara K, Fukusumi Y, Yamasaki M, et al. Non-basal slip systems operative in Mg12ZnY long-period stacking ordered (LPSO) phase with 18R and 14H structures. Mater Trans. 2013;54(5):693–697. DOI:10.2320/matertrans.MI201208