1,468
Views
1
CrossRef citations to date
0
Altmetric
Focus on Advancements of Functional Materials with Nanoarchitectonics as Post-Nanotechnology Concept in Materials Science

Photoinduced movement: how photoirradiation induced the movements of matter

ORCID Icon & ORCID Icon
Pages 796-844 | Received 06 Aug 2022, Accepted 27 Oct 2022, Published online: 30 Nov 2022

References

  • Bendix SW. Phototaxis. Bot Rev. 1960;26(2):145–208.
  • Jékely G. Evolution of phototaxis. Philos Trans R Soc B Biol Sci. 2009;364(1531):2795–2808.
  • Najafpour M, editor. Advances in photosynthesis - fundamental aspects. London: InTech; 2012.
  • Kohen E, Santus R, Hirschberg J. Photobiology. 1st ed. London: Academic Press; 1995.
  • Li Q, editor. Intelligent stimuli-responsive materials. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2013.
  • White TJ, editor. Photomechanical materials, composites, and systems. Chichester, UK: John Wiley & Sons, Ltd; 2017.
  • Shinkai S, Nakaji T, Ogawa T, et al. Photoresponsive crown ethers. 2. Photocontrol of ion extraction and ion transport by a bis(crown ether) with a butterfly-like motion. J Am Chem Soc. 1981;103(1):111–115. DOI:10.1021/ja00391a021
  • Bouas-Laurent H, Dürr H. Organic photochromism (IUPAC technical report). Pure Appl Chem. 2001;73(4):639–665.
  • Bullock DJW, Cumper CWN, Vogel AI. 989. Physical properties and chemical constitution. Part XLIII.* the electric dipole moments of azobenzene, azopyridine, and azoquinolines. J Chem Soc. 1965;5316–5323. DOI:10.1039/jr9650005316
  • Ye Y, Pang J, Zhou X, et al. Understanding the torsion effects on optical properties of azobenzene derivatives. Comput Theory Chem. 2016;1076:17–22.
  • Weissberger A. Dipole moment and structure of organic compounds. XVII.1 the electric moments of α- and β-stilbene dibromide and of p-diacetylbenzene. J Am Chem Soc. 1945;67(5):778–779.
  • Jakobsson FLE, Marsal P, Braun S, et al. Tuning the energy levels of photochromic diarylethene compounds for opto-electronic switch devices. J Phys Chem C. 2009;113(42):18396–18405. DOI:10.1021/jp9043573
  • Bletz M, Pfeifer-Fukumura U, Kolb U, et al. Ground-and first-excited-singlet-state electric dipole moments of some photochromic spirobenzopyrans in their spiropyran and merocyanine form. J Phys Chem A. 2002;106(10):2232–2236. DOI:10.1021/jp012562q
  • Irie M, Fukaminato T, Matsuda K, et al. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev. 2014;114(24):12174–12277. DOI:10.1021/cr500249p
  • Inouye M, Ueno M, Kitao T. Alkali metal recognition induced isomerization of spiropyrans. J Am Chem Soc. 1990;112(24):8977–8979.
  • Tanaka M, Ikeda T, Xu Q, et al. Synthesis and photochromism of spirobenzopyrans and spirobenzothiapyran derivatives bearing monoazathiacrown ethers and noncyclic analogues in the presence of metal ions. J Org Chem. 2002;67(7):2223–2227. DOI:10.1021/jo0162843
  • Heller CA, Fine DA, RA H. Photochromism. J Phys Chem. 1961;65(10):1908–1909.
  • Irie M. Diarylethenes for memories and switches. Chem Rev. 2000;100(5):1685–1716.
  • Kumar GS, Neckers DC. Photochemistry of azobenzene-containing polymers. Chem Rev. 1989;89(8):1915–1925.
  • Peng L, You M, Wu C, et al. Reversible Phase transfer of nanoparticles based on photoswitchable host–guest chemistry. ACS Nano. 2014;8(3):2555–2561. DOI:10.1021/nn4061385
  • Yamaguchi T, Ogawa M. Photochromic reactions in nanospace; host-guest interactions and opportunity. In: Douhal A, and Anpo M, editors. Dye photoactive mol microporous syst. 1st ed. Amsterdam: Elsevier; 2020. pp. 163–177.
  • In: Nakato T, Kawamata J, Takagi S editors. Inorganic nanosheets and nanosheet-based materials. Tokyo: Springer Japan; 2017.
  • Zhu J, Ding JJ, Liu XQ, et al. Realizing both selective adsorption and efficient regeneration using adsorbents with photo-regulated molecular gates. Chem Commun. 2016;52(21):4006–4009. DOI:10.1039/C5CC10634F
  • Cheng L, Jiang Y, Qi SC, et al. Controllable adsorption of CO2 on smart adsorbents: an interplay between amines and photoresponsive molecules. Chem Mater. 2018;30(10):3429–3437. DOI:10.1021/acs.chemmater.8b01005
  • Jiang Y, Park J, Tan P, et al. Maximizing photoresponsive efficiency by isolating metal–organic polyhedra into confined nanoscaled spaces. J Am Chem Soc. 2020;141(20):8221–8227. DOI:10.1021/jacs.9b01380
  • Baroncini M, D’Agostino S, Bergamini G, et al. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. Nat Chem. 2015;7(8):634–640. DOI:10.1038/nchem.2304
  • Huang N, Ding X, Kim J, et al. A Photoresponsive smart covalent organic framework. Angew Chem Int Ed. 2015;54:8704–8707.
  • Getman RB, Bae YS, Wilmer CE, et al. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chem Rev. 2012;112(2):703–723. DOI:10.1021/cr200217c
  • Bétard A, Fischer RA. Metal–organic framework thin films: from fundamentals to applications. Chem Rev. 2012;112(2):1055–1083.
  • Dolgopolova EA, Rice AM, Martin CR, et al. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem Soc Rev. 2018;47(13):4710–4728. DOI:10.1039/C7CS00861A
  • Rice AM, Martin CR, Galitskiy VA, et al. Photophysics modulation in photoswitchable metal–organic frameworks. Chem Rev. 2020;120(16):8790–8813. DOI:10.1021/acs.chemrev.9b00350
  • Hosono N, Uemura T. Metal–organic frameworks as versatile media for polymer adsorption and separation. Acc Chem Res. 2021;54(18):3593–3603.
  • Le Ouay B, Watanabe C, Mochizuki S, et al. Selective sorting of polymers with different terminal groups using metal-organic frameworks. Nat Commun. 2018;9(1):3635. DOI:10.1038/s41467-018-06099-z
  • Yao QX, Ju ZF, Jin XH, et al. Novel polythreaded coordination polymer: from an armed-polyrotaxane sheet to a 3D polypseudorotaxane array, photo-thermochromic behaviors. Inorg Chem. 2009;48(4):1266–1268. DOI:10.1021/ic8021672
  • Modrow A, Zargarani D, Herges R, et al. The first porous MOF with photoswitchable linker molecules. Dalton Trans. 2011;40(16):4217–4222. DOI:10.1039/c0dt01629b
  • Jin CM, Zhu Z, Chen ZF, et al. An unusual three-dimensional water cluster in metal−organic frameworks based on ZnX2 (X = ClO4, BF4) and an azo-functional ligand. Cryst Growth Des. 2010;10(5):2054–2056. DOI:10.1021/cg100226u
  • Liu Y, Eubank JF, Cairns AJ, et al. Assembly of metal–organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew Chem Int Ed. 2007;46(18):3278–3283. DOI:10.1002/anie.200604306
  • Sato H, Matsuda R, Sugimoto K, et al. Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion. Nat Mater. 2010;9(8):661–666. DOI:10.1038/nmat2808
  • Yanai N, Uemura T, Inoue M, et al. Guest-to-host transmission of structural changes for stimuli-responsive adsorption property. J Am Chem Soc. 2012;134(10):4501–4504. DOI:10.1021/ja2115713
  • Castellanos S, Goulet-Hanssens A, Zhao F, et al. Structural effects in visible-light-responsive metal-organic frameworks incorporating ortho-fluoroazobenzenes. Chem - A Eur J. 2016;22(2):746–752. DOI:10.1002/chem.201503503
  • Prasetya N, Donose BC, Ladewig BP. A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation. J Mater Chem A. 2018;6(34):16390–16402.
  • Modrow A, Zargarani D, Herges R, et al. Introducing a photo-switchable azo-functionality inside Cr-MIL-101-NH2 by covalent post-synthetic modification. Dalton Trans. 2012;41(28):8690–8696. DOI:10.1039/c2dt30672g
  • Park J, Yuan D, Pham KT, et al. Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal–organic framework. J Am Chem Soc. 2012;134(1):99–102. DOI:10.1021/ja209197f
  • Jiang Y, Shi XC, Tan P, et al. Controllable CO2 capture in metal–organic frameworks: making targeted active sites respond to light. Ind Eng Chem Res. 2020;59(50):21894–21900. DOI:10.1021/acs.iecr.0c04126
  • Huang H, Sato H, Aida T. Crystalline nanochannels with pendant azobenzene groups: steric or polar effects on gas adsorption and diffusion? J Am Chem Soc. 2017;139(26):8784–8787.
  • Jiang Y, Tan P, Qi SC, et al. Metal–organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2 capture. Angew Chem Int Ed. 2019;58(20):6600–6604. DOI:10.1002/anie.201900141
  • Healey K, Liang W, Southon PD, et al. Photoresponsive spiropyran-functionalised MOF-808: postsynthetic incorporation and light dependent gas adsorption properties. J Mater Chem A. 2016;4(28):10816–10819. DOI:10.1039/C6TA04160D
  • Choi HJ, Dinca M, Long JR. Broadly hysteretic H2 adsorption in the microporous metal−organic framework Co(1,4-benzenedipyrazolate). J Am Chem Soc. 2008;130(25):7848–7850.
  • Zeleňák V, Vargová Z, Almáši M, et al. Layer-pillared zinc(II) metal–organic framework built from 4,4′-azo(bis)pyridine and 1,4-BDC. Microporous Mesoporous Mater. 2010;129(3):354–359. DOI:10.1016/j.micromeso.2009.11.002
  • Maji TK, Uemura K, Chang H-C, et al. Expanding and shrinking porous modulation based on pillared-layer coordination polymers showing selective guest adsorption. Angew Chem. 2004;116(25):3331–3334. DOI:10.1002/ange.200453923
  • Noro S, Kitagawa S, Nakamura T, et al. Synthesis and crystallographic characterization of low-dimensional and porous coordination compounds capable of supramolecular aromatic interaction using the 4,4‘-Azobis(pyridine) ligand. Inorg Chem. 2005;44(11):3960–3971. DOI:10.1021/ic048371u
  • Kondo M, Shimamura M, Noro S, et al. Microporous materials constructed from the interpenetrated coordination networks. Structures and methane adsorption properties. Chem Mater. 2000;12(5):1288–1299. DOI:10.1021/cm990612m
  • Noro S, Kondo M, Ishii T, et al. Syntheses and crystal structures of iron co-ordination polymers with 4,4′-bipyridine (4,4′-bpy) and 4,4′-azopyridine (azpy). Two-dimensional networks supported by hydrogen bonding, {[Fe(azpy)(NCS)2(MeOH)2]·azpy}n and {[Fe(4,4′-bpy)(NCS)2(H2O)2]·4,4′-bpy}n. J Chem Soc Dalt Trans. 1999;2010(10):1569–1574. DOI:10.1039/a809523j
  • Kondo M, Shimamura M, Noro S, et al. Syntheses and structures of Zn coordination polymers with 4,4′-bipyridine and 4,4′-azopyridine. Effect of counter anions on the network system. Chem Lett. 1999;28(4):285–286. DOI:10.1246/cl.1999.285
  • Kobatake S, Kitagawa D. Photomechanical behavior of photochromic diarylethene crystals. In: Koshima H, editor. Mech responsive mater soft robot. 1st ed. Weinheim, Germany: Wiley; 2020. pp. 1–28.
  • Lyndon R, Konstas K, Ladewig BP, et al. Dynamic photo-switching in metal-organic frameworks as a route to low-energy carbon dioxide capture and release. Angew Chem Int Ed. 2013;52(13):3695–3698. DOI:10.1002/anie.201206359
  • Li H, Martinez MR, Perry Z, et al. A robust metal–organic framework for dynamic light-induced swing adsorption of carbon dioxide. Chem - A Eur J. 2016;22(32):11176–11179. DOI:10.1002/chem.201602671
  • Prasetya N, Teck AA, Ladewig BP. Matrimid-JUC-62 and matrimid-PCN-250 mixed matrix membranes displaying light-responsive gas separation and beneficial ageing characteristics for CO2/N2 separation. Sci Rep. 2018;8(1):2944.
  • Jiang Y, Tan P, Qi SC, et al. Breathing metal–organic polyhedra controlled by light for carbon dioxide capture and liberation. CCS Chem. 2020;3(6):1659–1668. DOI:10.31635/ccschem.020.202000314
  • Drake HF, Xiao Z, Day GS, et al. Influence of metal identity on light-induced switchable adsorption in azobenzene-based metal–organic frameworks. ACS Appl Mater Interfaces. 2022;14(9):11192–11199. DOI:10.1021/acsami.1c18266
  • Prasetya N, Ladewig BP. Dynamic photo-switching in light-responsive JUC-62 for CO2 capture. Sci Rep. 2017;7(1):13355.
  • Zheng Y, Sato H, Wu P, et al. Flexible interlocked porous frameworks allow quantitative photoisomerization in a crystalline solid. Nat Commun. 2017;8(1):100. DOI:10.1038/s41467-017-00122-5
  • Hazra A, Bonakala S, Adalikwu SA, et al. Fluorocarbon-functionalized superhydrophobic metal–organic framework: enhanced CO2 uptake via photoinduced postsynthetic modification. Inorg Chem. 2021;60(6):3823–3833. DOI:10.1021/acs.inorgchem.0c03575
  • Xue M, Zhu G, Li Y, et al. Structure, hydrogen storage, and luminescence properties of three 3D metal−organic frameworks with NbO and PtS topologies. Cryst Growth Des. 2008;8(7):2478–2483. DOI:10.1021/cg8001114
  • Stoeck U, Krause S, Bon V, et al. A highly porous metal–organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. Chem Commun. 2012;48(88):10841–10843. DOI:10.1039/c2cc34840c
  • Krause S, Evans JD, Bon V, et al. Cooperative light-induced breathing of soft porous crystals via azobenzene buckling. Nat Commun. 2022;13(1):1951. DOI:10.1038/s41467-022-29149-z
  • Krause S, Evans JD, Bon V, et al. Engineering micromechanics of soft porous crystals for negative gas adsorption. Chem Sci. 2020;11(35):9468–9479. DOI:10.1039/D0SC03727C
  • Zhai C, Lin S, Wang M, et al. Conformational freedom-enhanced optomechanical energy conversion efficiency in bulk azo-polyimides. Adv Funct Mater. 2021;31(45):2104414. DOI:10.1002/adfm.202104414
  • Hermann D, Emerich H, Lepski R, et al. Metal–organic frameworks as hosts for photochromic guest molecules. Inorg Chem. 2013;52(5):2744–2749. DOI:10.1021/ic302856b
  • Hermann D, Schwartz HA, Werker M, et al. Metal-organic frameworks as hosts for fluorinated azobenzenes: a path towards quantitative photoswitching with visible light. Chem Eur J. 2019;25(14):3606–3616. DOI:10.1002/chem.201805391
  • Garg S, Schwartz H, Kozlowska M, et al. Conductance photoswitching of metal–organic frameworks with embedded spiropyran. Angew Chem Int Ed. 2019;58(4):1193–1197. DOI:10.1002/anie.201811458
  • Tu M, Reinsch H, Rodríguez-Hermida S, et al. Reversible optical writing and data storage in an anthracene‐loaded metal‐organic framework. Angew Chem. 2018;2445–2449. DOI:10.1002/ange.201813996.
  • Myers AL, Prausnitz JM. Thermodynamics of mixed-gas adsorption. AIChE J. 1965;11(1):121–127.
  • Kim H, Yang S, Rao SR, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science. 2017;356(6336):430–434. DOI:10.1126/science.aam8743
  • Al-Rowaili FN, Zahid U, Onaizi S, et al. A review for metal-organic frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. J CO2 Util. 2021;53:101715.
  • Leodopoulos C, Doulia D, Gimouhopoulos K. Adsorption of cationic dyes onto bentonite. Sep Purif Rev. 2014;44(1):74–107.
  • Phuekphong AF, Imwiset KJ, Ogawa M. Designing nanoarchitecture for environmental remediation based on the clay minerals as building block. J Hazard Mater. 2020;399:122888.
  • Okada T, Seki Y, Ogawa M. Designed nanostructures of clay for controlled adsorption of organic compounds. J Nanosci Nanotechnol. 2014;14(3):2121–2134.
  • Sanchez C, Julián B, Belleville P, et al. Applications of hybrid organic–inorganic nanocomposites. J Mater Chem. 2005;15(35–36):3559–3592. DOI:10.1039/b509097k
  • Martínez-Martínez V, López Arbeloa F, editors. Dyes and photoactive molecules in microporous systems. Berlin, Heidelberg: Springer International Publishing; 2020. (Structure and Bonding; vol. 183).
  • Teepakakorn AP, Yamaguchi T, Ogawa M. The improved stability of molecular guests by the confinement into nanospaces. Chem Lett. 2019;48(5):398–409.
  • Choi G, Kim TH, Oh JM, et al. Emerging nanomaterials with advanced drug delivery functions; focused on methotrexate delivery. Coord Chem Rev. 2018;359:32–51.
  • Ogawa M, Kuroda K. Photofunctions of intercalation compounds. Chem Rev. 1995;95(2):399–438.
  • Yamaguchi T, Oh J-M, Ogawa M. Photofunctions of dye-clay hybrids: recent developments. In: Martínez-Martínez V López Arbeloa F, editors. Structure and Bonding. Berlin, Heidelberg: Springer; 2020. p. 251–320.
  • Sasai R, Ogiso H, Shindachi I, et al. Photochromism in oriented thin films prepared by the hybridization of diarylethenes in clay interlayers. Tetrahedron. 2000;56(36):6979–6984. DOI:10.1016/S0040-4020(00)00519-6
  • Shindachi I, Hanaki H, Sasai R, et al. The effect of layered sodium–magadiite on the photochromic reversibility of diarylethene immobilized on its surfaces. Chem Lett. 2004;33(9):1116–1117. DOI:10.1246/cl.2004.1116
  • Sasai R, Itoh H, Shindachi I, et al. Photochromism of clay−diarylethene hybrid materials in optically transparent gelatin films. Chem Mater. 2001;13(6):2012–2016. DOI:10.1021/cm000822v
  • Nakamura T, Takagi K, Itoh M, et al. Photodimerization of cinnamic acids controlled by molecular assemblies of surfactant amine N-oxides. J Chem Soc Perkin Trans 2. 1997;2(12):2751–2755. DOI:10.1039/a702413d
  • Shichi T, Takagi K, Sawaki Y. Stereoselectivity control of [2 + 2] photocycloaddition by changing site distances of hydrotalcite interlayers. Chem Commun. 1996;17(17):2027–2028.
  • Shichi T, Yamashita S, Takagi K. Photopolymerization of 4-vinylbenzoate and m- and p-phenylenediacrylates in hydrotalcite interlayers. Supramol Sci. 1998;5(3–4):303–308.
  • Takagi K, Shichi T, Usami H, et al. Controlled photocycloaddition of unsaturated carboxylates intercalated in hydrotalcite clay interlayers. J Am Chem Soc. 1993;115(10):4339–4344. DOI:10.1021/ja00063a060
  • Takagi K, Usami H, Fukaya H, et al. Spatially controlled photocycloaddition of a clay-intercalated stilbazolium cation. J Chem Soc Chem Commun. 1989;(16):1174–1175. DOI:10.1039/c39890001174.
  • Sasai R, Shin’ya N, Shichi T, et al. Molecular alignment and photodimerization of 4′-Chloro-4-stilbenecarboxylic acid in hydrotalcite clays: bilayer formation in the interlayers. Langmuir. 2002;15(2):413–418. DOI:10.1021/la980699a
  • Kashima I, Okubo M, Qno Y, et al. Ferromagnetism and its photo-induced effect in 2D iron mixed-valence complex coupled with photochromic spiropyran. Synth Met. 2005;155(3):703–706. DOI:10.1016/j.synthmet.2005.09.033
  • Enomoto M, Kojima N. Charge transfer phase transition and ferromagnetism in a novel iron mixed-valence complex (n-C3H7)4N[FeIIFeIII(tto)3] (tto=C2OS3). Synth Met. 2005;152(1–3):457–460.
  • Kida N, Hikita M, Kashima I, et al. Mössbauer spectroscopic study of photo-sensitive organic–inorganic hybrid system, (SP)[Fe(II)Fe(III)(dto)3](dto = C2O2S2, SP = spiropyran). Polyhedron. 2009;28(9–10):1694–1697. DOI:10.1016/j.poly.2008.10.060
  • Kida N, Hikita M, Kashima I, et al. Control of charge transfer phase transition and ferromagnetism by photoisomerization of spiropyran for an organic−inorganic hybrid system, (SP)[FeIIFeIII(dto)3] (SP= spiropyran, dto= C2O2S2. J Am Chem Soc. 2009;131(1):212–220. DOI:10.1021/ja806879a
  • Tanaka N, Okazawa A, Sugahara A, et al. Development of a photoresponsive organic–inorganic hybrid magnet: layered cobalt hydroxides intercalated with spiropyran anions. Bull Chem Soc Jpn. 2015;88(8):1150–1155. DOI:10.1246/bcsj.20150129
  • Abellán G, Coronado E, Martí-Gastaldo C, et al. Photo-switching in a hybrid material made of magnetic layered double hydroxides intercalated with azobenzene molecules. Adv Mater. 2014;26(24):4156–4162. DOI:10.1002/adma.201400713
  • Abellán G, Jordá JL, Atienzar P, et al. Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule. Chem Sci. 2015;6(3):1949–1958. DOI:10.1039/C4SC03460K
  • Okubo M, Enomoto M, Kojima N. Study on photomagnetism of 2-D magnetic compounds coupled with photochromic diarylethene cations. Synth Met. 2005;152(1–3):461–464.
  • Ogawa M, Fujii K, Kuroda K, et al. Preparation of montmorillonite-p-aminoazobenzene intercalation compounds and their photochemical behavior. Mater Res Soc Symp Proc. 1991;233:89–94.
  • Okada T, Nozaki N, Seo J, et al. Photoinduced structural changes of cationic azo dyes confined in a two dimensional nanospace by two different mechanisms. RSC Adv. 2017;7(13):8077–8081. DOI:10.1039/C6RA27749G
  • Okada T, Sakai H, Ogawa M. The effect of the molecular structure of a cationic azo dye on the photoinduced intercalation of phenol in a montmorillonite. Appl Clay Sci. 2008;40(1–4):187–192.
  • Ogawa M. Photoisomerization of azobenzene in the interlayer space of magadiite. J Mater Chem. 2002;12(11):3304–3307.
  • Ogawa M, Ishikawa A. Controlled microstructures of amphiphilic cationic azobenzene-montmorillonite intercalation compounds. J Mater Chem. 1998;8(2):463–467.
  • Ogawa M, Ishii T, Miyamoto N, et al. Intercalation of a cationic azobenzene into montmorillonite. Appl Clay Sci. 2003;22(4):179–185. DOI:10.1016/S0169-1317(02)00157-6
  • Kim CS, Yates DM, Heaney PJ. The layered sodium silicate magadiite: an analog to smectite for benzene sorption from water. Clays Clay Miner. 1997;45(6):881–885.
  • Ogawa M, Ishii T, Miyamoto N, et al. Photocontrol of the basal spacing of azobenzene–magadiite intercalation compound. Adv Mater. 2001;13(14):1107–1109. DOI:10.1002/1521-4095(200107)13:14<1107:AID-ADMA1107>3.0.CO;2-O
  • Heinz H, Vaia RA, Koerner H, et al. Photoisomerization of azobenzene grafted to layered silicates: simulation and experimental challenges. Chem Mater. 2008;20(20):6444–6456. DOI:10.1021/cm801287d
  • Fujita T, Iyi N, Klapyta Z. Optimum conditions for photoresponse of azobenzene-organophilic tetrasilicic mica complexes. Mater Res Bull. 2001;36(3–4):557–571.
  • Fujita T, Iyi N, Klapyta Z, et al. Photomechanical response of azobenzene/organophilic mica complexes. Mater Res Bull. 2003;38(15):2009–2017. DOI:10.1016/j.materresbull.2003.09.012
  • Ogawa M, Iwata D. Arrangements of interlayer quaternary ammonium ions in a layered silicate, octosilicate. Cryst Growth Des. 2010;10(5):2068–2072.
  • Lagaly G, Fernandez Gonzalez M, Weiss A. Problems in layer-charge determination of montmorillonites. Clay Miner. 1976;11(3):173–187.
  • Koteja A, Szczerba M, Matusik J. Smectites intercalated with azobenzene and aminoazobenzene: structure changes at nanoscale induced by UV light. J Phys Chem Solids. 2017;111:294–303.
  • Abbaszad Rafi A, Hamidi N, Bashir-Hashemi A, et al. Photo-switchable nanomechanical systems comprising a nanocontainer (montmorillonite) and light-driven molecular jack (azobenzene-imidazolium ionic liquids) as drug delivery systems; synthesis, characterization, and in vitro release studies. ACS Biomater Sci Eng. 2018;4(1):184–192. DOI:10.1021/acsbiomaterials.7b00621
  • Okada T, Watanabea Y, Ogawa M. Photocontrol of the adsorption behavior of phenol for an azobenzene-montmorillonite intercalation compound. Chem Commun. 2004;1(3):320–321.
  • Okada T, Watanabe Y, Ogawa M. Photoregulation of the intercalation behavior of phenol for azobenzene–clay intercalation compounds. J Mater Chem. 2005;15(9):987.
  • Nabetani Y, Takamura H, Hayasaka Y, et al. An artificial muscle model unit based on inorganic nanosheet sliding by photochemical reaction. Nanoscale. 2013;5(8):3182–3193. DOI:10.1039/c3nr34308a
  • Nabetani Y, Takamura H, Hayasaka Y, et al. A photoactivated artificial muscle model unit: reversible, photoinduced sliding of nanosheets. J Am Chem Soc. 2011;133(43):17130–17133. DOI:10.1021/ja207278t
  • Nabetani Y, Takamura H, Uchikoshi A, et al. Photo-induced morphological winding and unwinding motion of nanoscrolls composed of niobate nanosheets with a polyfluoroalkyl azobenzene derivative. Nanoscale. 2016;8(24):12289–12293. DOI:10.1039/C6NR02177H
  • Tong Z, Takagi S, Shimada T, et al. Photoresponsive multilayer spiral nanotubes: intercalation of polyfluorinated cationic azobenzene surfactant into potassium niobate. J Am Chem Soc. 2006;128(3):684–685. DOI:10.1021/ja0564564
  • Guo S, Matsukawa K, Miyata T, et al. Photoinduced bending of self-assembled azobenzene–siloxane hybrid. J Am Chem Soc. 2015;137(49):15434–15440. DOI:10.1021/jacs.5b06172
  • Helmy S, Leibfarth FA, Oh S, et al. Photoswitching using visible light : a new class of organic photochromic molecules. J Am Chem Soc. 2014;136(23):8169–8172. DOI:10.1021/ja503016b
  • Gomes RFA, Coelho JAS, Afonso CAM. Synthesis and applications of Stenhouse salts and derivatives. Chem - A Eur J. 2018;24(37):9170–9186.
  • Lerch MM, Szymański W, Feringa BL. The (photo)chemistry of stenhouse photoswitches: guiding principles and system design. Chem Soc Rev. 2018;47(6):1910–1937.
  • García-López V, Chen F, Nilewski LG, et al. Molecular machines open cell membranes. Nature. 2017;548(7669):567–572. DOI:10.1038/nature23657
  • Shinkai S, Minami T, Kusano Y, et al. Photoresponsive crown ethers 5. Light-driven ion transport by crown ethers with a photoresponsive anionic cap. J Am Chem Soc. 1982;104(7):1967–1972. DOI:10.1021/ja00371a028
  • Shinkai S, Shigematsu K, Sato M, et al. Photoresponsive crown ethers. Part 6. Ion transport mediated by photoinduced cis—trans interconversion of azobis(benzocrown ethers). J Chem Soc Perkin Trans 1. 1982;2735–2739. DOI:10.1039/P19820002735.
  • Shinkai S, Ishihara M, Ueda K, et al. Photoresponsive crown ethers Part 14. Photoregulated crown–metal complexation by competitive intramolecular tail(ammonium)-biting. J Chem Soc Perkin Trans 2. 1985;7(4):511–518. DOI:10.1039/P29850000511
  • Sakamoto H, Takagaki H, Nakamura M, et al. Photoresponsive liquid membrane transport of alkali metal ions using crowned spirobenzopyrans. Anal Chem. 2005;77(7):1999–2006. DOI:10.1021/ac048642i
  • Khairutdinov RF, Hurst JK. Light-driven transmembrane ion transport by spiropyran−crown ether supramolecular assemblies. Langmuir. 2004;20(5):1781–1785.
  • Xie X, Crespo GA, Mistlberger G, et al. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat Chem. 2014;6(3):202–207. DOI:10.1038/nchem.1858
  • Steinberg-Yfrach G, Liddell PA, Hung S-C, et al. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature. 1997;385:239–241.
  • Steinberg-Yfrach G, Rigaud JL, Durantini EN, et al. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature. 1998;392(6675):479–482. DOI:10.1038/33116
  • de Thieulloy L, Barois C, Mongin C, et al. Is it possible to”simply” predict the photoejection of a cation? Example of azacrown-substituted [(bpy)Re(CO)3L]+ complexes. J Photochem Photobiol A Chem. 2022;426:113714.
  • Bennett IM, Vanegas Farfano HM, Bogani F, et al. Active transport of Ca2+ by an artificial photosynthetic membrane. Nature. 2002;420:398–401.
  • Lewis JD, Perutz RN, Moore JN. Light-controlled ion switching: direct observation of the complete nanosecond release and microsecond recapture cycle of an azacrown-substituted [(bpy)Re(CO)3L]+ complex. J Phys Chem A. 2004;108(42):9037–9047.
  • Salunke SB, Malla JA, Talukdar P. Phototriggered release of a transmembrane chloride carrier from an o-nitrobenzyl-linked procarrier. Angew Chem Int Ed. 2019;58(16):5354–5358.
  • Shinkai S, Honda Y, Ueda K, et al. Photoresponsive crown ethers. 12. Photocontrol of metal ion complexation with thiacrown ethers. Bull Chem Soc Jpn. 1984;57(8):2144–2149. DOI:10.1246/bcsj.57.2144
  • Shinkai S, Shigematsu K, Honda Y, et al. Photoresponsive crown ethers 13. Synthesis of photoresponsive NS2O crown ethers and application of the Cu(I) complexes to O2-Binding. Bull Chem Soc Jpn. 1984;57:2879–2884.
  • Shinkai S, Miyazaki K, Manabe O. Photoresponsive crown ethers. Part 18. Photochemically “switched-on” crown ethers containing an intra-annular azo substituent and their application to membrane transport. J Chem Soc Perkin Trans 1. 1987;449–456. DOI:10.1039/P19870000449
  • Shinkai S, Ogawa T, Nakaji T, et al. Photocontrolled extraction ability of azobenzene-bridged azacrown ether. Tetrahedron Lett. 1979;20(47):4569–4572. DOI:10.1016/S0040-4039(01)86651-X
  • Shinkai S, Nakaji T, Nishida Y, et al. Photoresponsive crown ethers. 1. Cis-trans isomerism of azobenzene as a tool to enforce conformational changes of crown ethers and polymers. J Am Chem Soc. 1980;102(18):5860–5865. DOI:10.1021/ja00538a026
  • Shinkai S, Shigematsu K, Kusano Y, et al. Photoresponsive crown ethers. Part 3. Photocontrol of ion extraction and ion transport by several photofunctional bis(crown ethers). J Chem Soc Perkin Trans 1. 1981;3279–3283. DOI:10.1039/p19810003279.
  • Shinkai S, Ogawa T, Kusano Y, et al. Photoresponsive crown ethers. 4. influence of alkali metal cations on photoisomerization and thermal isomerization of azobis(benzocrown ether)s. J Am Chem Soc. 1982;104(7):1960–1967. DOI:10.1021/ja00371a027
  • Shinkai S, Minami T, Kusano Y, et al. Photoresponsive crown ethers. 8. Azobenzenophane-type “switched-on” crown ethers which exhibit an all-or-nothing change in ion-binding ability. J Am Chem Soc. 1983;105(7):1851–1856. DOI:10.1021/ja00345a029
  • Shinkai S, Honda Y, Minami T, et al. Photoresponsive crown ethers. 9. Cylindrical and phane crown ethers with azobenzene segments as a light-switch functional group. Bull Chem Soc Jpn. 1983;56(6):1700–1704. DOI:10.1246/bcsj.56.1700
  • Shinkai S, Honda Y, Ueda K, et al. Photoresponsive crown ethers. Part 11. Azobenzene‐pillared cylindrical macrocycle as a photoresponsive receptor. ISR J Chem. 1984;24(4):302–306. DOI:10.1002/ijch.198400052
  • Choi YR, Kim GC, Jeon HG, et al. Azobenzene-based chloride transporters with light-controllable activities. Chem Commun. 2014;50(97):15305–15308. DOI:10.1039/C4CC07560A
  • Kerckhoffs A, Langton MJ. Reversible photo-control over transmembrane anion transport using visible-light responsive supramolecular carriers. Chem Sci. 2020;11(24):6325–6331.
  • Ahmad M, Metya S, Das A, et al. A sandwich azobenzene–diamide dimer for photoregulated chloride transport. Chem Eur J. 2020;26(40):8703–8708. DOI:10.1002/chem.202000400
  • Li H, Zhang Y, Jia Z, et al. Theoretical design on molecular tweezers of sodium cyanide by zinc porphyrin-azo-crown ether triads receptor. J Phys Org Chem. 2019;32(8):1–10. DOI:10.1002/poc.3963
  • Shinkai S, Kinda H, Ishihara M, et al. Photoresponsive crown ethers. 10. Metal complexation by light-switched crown ethers immobilized in polymer matrices. J Polym Sci Part A. 1983;21(12):3525–3539. DOI:10.1002/pol.1983.170211214
  • Sakamoto H, Yokohata T, Yamamura T, et al. Liquid−liquid extraction of alkali metal ions with photochromic crowned spirobenzopyrans. Anal Chem. 2002;74(11):2522–2528. DOI:10.1021/ac020003p
  • Li E, Kang J, Ye P, et al. A prospective material for the highly selective extraction of lithium ions based on a photochromic crowned spirobenzopyran. J Mater Chem B. 2019;7(6):903–907. DOI:10.1039/C8TB02906G
  • Kimura K, Nakahara Y. Analytical and separation chemistry by taking advantage of organic photochromism combined with macrocyclic chemistry. Anal Sci. 2009;25(1):9–20.
  • Nakamura M, Sakamoto H, Kimura K. Photocontrollable cation extraction with crowned oligo(spirobenzopyran)s. Anal Sci. 2005;21(4):403–408.
  • Kimura K, Sakamoto H, Nakamura M. Molecular design and applications of photochromic crown compounds —how can we manipulate metal ions photochemically?. Bull Chem Soc Jpn. 2003;76(2):225–245.
  • Kandori H, Inoue K, Tsunoda SP. Light-driven sodium-pumping rhodopsin: a new concept of active transport. Chem Rev. 2018;118(21):10646–10658.
  • Engelhard C, Chizhov I, Siebert F, et al. Microbial halorhodopsins: light-driven chloride pumps. Chem Rev. 2018;118(21):10629–10645. DOI:10.1021/acs.chemrev.7b00715
  • Xie G, Li P, Zhao Z, et al. Bacteriorhodopsin-inspired light-driven artificial molecule motors for transmembrane mass transportation. Angew Chem Int Ed. 2018;57(51):16708–16712. DOI:10.1002/anie.201809627
  • Xiao K, Giusto P, Chen F, et al. Light-driven directional ion transport for enhanced osmotic energy harvesting. Natl Sci Rev. 2021;8(8):nwaa231. DOI:10.1093/nsr/nwaa231
  • Koçer A, Walko M, Meijberg W, et al. A light-actuated nanovalve derived from a channel protein. Science. 2005;309(5735):755–758. DOI:10.1126/science.1114760
  • Bonardi F, London G, Nouwen N, et al. Light-induced control of protein translocation by the SecYEG complex. Angew Chem Int Ed. 2010;49(40):7234–7238. DOI:10.1002/anie.201002243
  • Muramatsu S, Kinbara K, Taguchi H, et al. Semibiological molecular machine with an implemented “AND” logic gate for regulation of protein folding. J Am Chem Soc. 2006;128(11):3764–3769. DOI:10.1021/ja057604t
  • Sendai T, Biswas S, Aida T. Photoreconfigurable supramolecular nanotube. J Am Chem Soc. 2013;135(31):11509–11512.
  • Yang X, Ma G, Zheng S, et al. Optical control of CRAC channels using photoswitchable azopyrazoles. J Am Chem Soc. 2020;142(20):9460–9470. DOI:10.1021/jacs.0c02949
  • Sukharev S, Anishkin A. Mechanosensitive channels: what can we learn from “simple” model systems? Trends Neurosci. 2004;27(6):345–351.
  • du Plessis DJF, Berrelkamp G, Nouwen N, et al. The lateral gate of SecYEG opens during protein translocation. J Biol Chem. 2009;284(23):15805–15814. DOI:10.1074/jbc.M901855200
  • Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell. 1998;92:351–366.
  • Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–529.
  • Derler I, Schindl R, Fritsch R, et al. The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium. 2013;53(2):139–151. DOI:10.1016/j.ceca.2012.11.005
  • Fyles TM, James TD, Kaye KC. Activities and modes of action of artificial ion-channel mimics. J Am Chem Soc. 1993;115(26):12315–12321.
  • Voyer N, Robitaille M. A novel functional artificial ion channel. J Am Chem Soc. 1995;117(24):6599–6600.
  • Hu Y, Roberts JM, Kilgore HR, et al. Triple, mutually orthogonal bioorthogonal pairs through the design of electronically activated sulfamate-containing cycloalkynes. J Am Chem Soc. 2020;142(44):18859–18865. DOI:10.1021/jacs.0c06725
  • Liu T, Bao C, Wang H, et al. Self-assembly of crown ether-based amphiphiles for constructing synthetic ion channels: the relationship between structure and transport activity. New J Chem. 2014;38(8):3507–3513. DOI:10.1039/C4NJ00297K
  • Bhosale S, Sisson AL, Talukdar P, et al. Photoproduction of proton gradients with π-stacked fluorophore scaffolds in lipid bilayers. Science. 2006;313(5783):84–86. DOI:10.1126/science.1126524
  • Bao C, Ma M, Meng F, et al. Efficient synthetic supramolecular channels and their light-deactivated ion transport in bilayer lipid membranes. New J Chem. 2015;39(8):6297–6302. DOI:10.1039/C5NJ00937E
  • Zhou Y, Chen Y, Zhu P, et al. Reversible photo-gated transmembrane channel assembled from an acylhydrazone-containing crown ether triad. Chem Commun. 2017;53(26):3681–3684. DOI:10.1039/C7CC01123G
  • Liu T, Bao C, Wang H, et al. Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis–trans photoisomerization. Chem Commun. 2013;49(87):10311–10313. DOI:10.1039/c3cc45618h
  • Wang WZ, Huang LB, Zheng SP, et al. Light-driven molecular motors boost the selective transport of alkali metal ions through phospholipid bilayers. J Am Chem Soc. 2021;143(38):15653–15660. DOI:10.1021/jacs.1c05750
  • Matile S, Sakai N. The characterization of synthetic ion channels and pores. In: Schalley C, editor. Analytical Methods in Supramolecular Chemistry. Weinheim, Germany: Wiley-VCH; 2007. pp. 391–418.
  • Vlassiouk I, Park C-D, Vail SA, et al. Control of nanopore wetting by a photochromic spiropyran: a light-controlled valve and electrical switch. Nano Lett. 2006;6(5):1013–1017. DOI:10.1021/nl060313d
  • Wang G, Bohaty AK, Zharov I, et al. Photon gated transport at the glass nanopore electrode. J Am Chem Soc. 2006;128(41):13553–13558. DOI:10.1021/ja064274j
  • Bohaty AK, Newton MR, Zharov I. Light-controlled ion transport through spiropyran-modified nanoporous silica colloidal films. J Porous Mater. 2010;17(4):465–473.
  • Zhang M, Hou X, Wang J, et al. Light and pH cooperative nanofluidic diode using a spiropyran-functionalized single nanochannel. Adv Mater. 2012;24(18):2424–2428. DOI:10.1002/adma.201104536
  • Takashima Y, Harada A. Functioning via host–guest interactions. J Incl Phenom Macrocyclic Chem. 2017;87(3–4):313–330.
  • Harada A, Kobayashi R, Takashima Y, et al. Macroscopic self-assembly through molecular recognition. Nat Chem. 2011;3(1):34–37. DOI:10.1038/nchem.893
  • Liu P, Zhou T, Teng Y, et al. Light-induced heat driving active ion transport based on 2D MXene nanofluids for enhancing osmotic energy conversion. CCS Chem. 2021;3(4):1325–1335. DOI:10.31635/ccschem.020.202000296
  • Lin F, Lonergan MC. Semiconducting bipolar membranes: photochemical salt pumps. ACS Appl Energy Mater. 2020;3(5):4103–4107.
  • Barrio J, Sánchez-Somolinos C. Light to shape the future : from photolithography to 4D printing. Adv Opt Mater. 2019;7(16):1900598.
  • Phillips HM, Callahan DL, Sauerbrey R, et al. Sub-100 nm lines produced by direct laser ablation in polyimide. Appl Phys Lett. 1991;58(24):2761–2763. DOI:10.1063/1.104778
  • Natansohn A, Rochon P. Photoinduced motions in azo-containing polymers. Chem Rev. 2002;102(11):4139–4175.
  • Viswanathan NK, Kim DY, Bian S, et al. Surface relief structures on azo polymer films. J Mater Chem. 1999;9(9):1941–1955. DOI:10.1039/a902424g
  • Oscurato SL, Salvatore M, Maddalena P, et al. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics. 2018;7(8):1387–1422. DOI:10.1515/nanoph-2018-0040
  • Lee S, Kang HS, Park JK. Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials. Adv Mater. 2012;24(16):2069–2103.
  • Kim CB, Janes DW, Zhou SX, et al. Bidirectional control of flow in thin polymer films by photochemically manipulating surface tension. Chem Mater. 2015;27(13):4538–4545. DOI:10.1021/acs.chemmater.5b01744
  • Jones AR, Kim CB, Zhou SX, et al. Generating large thermally stable marangoni-driven topography in polymer films by stabilizing the surface energy gradient. Macromolecules. 2017;50(11):4588–4596. DOI:10.1021/acs.macromol.7b00055
  • Dai M, Picot OT, Hughes-Brittain NF, et al. Formation of relief structures on fibres by photo-embossing. J Mater Chem. 2011;21(39):15527–15531. DOI:10.1039/c1jm12365c
  • Liedtke A, Lei C, O’Neill M, et al. One-step photoembossing for submicrometer surface relief structures in liquid crystal semiconductors. ACS Nano. 2010;4(6):3248–3253. DOI:10.1021/nn100012g
  • Ubukata T, Nakayama M, Sonoda T, et al. Highly sensitive formation of stable surface relief structures in bisanthracene films with spatially patterned photopolymerization. ACS Appl Mater Interfaces. 2016;8(34):21974–21978. DOI:10.1021/acsami.6b07943
  • Kawatsuki N, Tashima A, Manabe S, et al. Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325-nm laser with various polarizations. React Funct Polym. 2010;70(12):980–985. DOI:10.1016/j.reactfunctpolym.2010.10.006
  • Lavielle L, Croutxé-Barghorn C, Schuller E, et al. Photopolymerization of acrylate films under an imposed spatial irradiation: thermodynamics of relief self-development. J Colloid Interface Sci. 1997;192(1):149–155. DOI:10.1006/jcis.1997.4972
  • Kawatsuki N, Hasegawa T, Ono H, et al. Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography. Adv Mater. 2003;15(12):991–994. DOI:10.1002/adma.200304988
  • Veltri A, Caputo R, Umeton C, et al. Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials. Appl Phys Lett. 2004;84(18):3492–3494. DOI:10.1063/1.1738182
  • Goldenberg L, Sakhno O, Stumpe J. Application of Norland adhesive for holographic recording. Opt Mater. 2005;27(8):1379–1385.
  • Aoki K, Ichimura K. Self-developable surface relief photoimaging generated by anionic UV-curing of epoxy resins. Polym J. 2009;41(11):988–992.
  • Hughes-Brittain NF, Qiu L, Wang W, et al. Photoembossing of surface relief structures in polymer films for biomedical applications. J Biomed Mater Res - Part B Appl Biomater. 2014;102(2):214–220. DOI:10.1002/jbm.b.32997
  • Picot OT, Alcalá R, Sánchez C, et al. Manufacturing of surface relief structures in moving substrates using photoembossing and pulsed-interference holography. Macromol Mater Eng. 2013;298(1):33–37. DOI:10.1002/mame.201100433
  • Hashimoto S, Aizawa M, Akamatsu N, et al. Simultaneous formation behaviour of surface structures and molecular alignment by patterned photopolymerisation. Liq Cryst. 2019;46(13–14):1995–2002. DOI:10.1080/02678292.2019.1610980
  • Ubukata T, Yamamoto S, Moriya Y, et al. Photo-triggered surface relief of polystyrene films-highly photo-sensitive formation by the addition of a benzophenone derivative. J Photopolym Sci Technol. 2012;25(5):675–678. DOI:10.2494/photopolymer.25.675
  • Fiorini C, Prudhomme N, De Veyrac G, et al. Molecular migration mechanism for laser induced surface relief grating formation. Synth Met. 2000;115(1–3):121–125. DOI:10.1016/S0379-6779(00)00332-5
  • Yager KG, Barrett CJ. All-optical patterning of azo polymer films. Curr Opin Solid State Mater Sci. 2001;5(6):487–494.
  • Baldus O, Zilker SJ. Surface relief gratings in photoaddressable polymers generated by cw holography. Appl Phys B Lasers Opt. 2001;72(4):425–427.
  • Hubert C, Fiorini-Debuisschert C, Maurin I, et al. Spontaneous patterning of hexagonal structures in an azo-polymer using light-controlled mass transport. Adv Mater. 2002;14(10):729–732. DOI:10.1002/1521-4095(20020517)14:10<729:AID-ADMA729>3.0.CO;2-1
  • Sumaru K, Fukuda T, Kimura T, et al. Photoinduced surface relief formation on azopolymer films: a driving force and formed relief profile. J Appl Phys. 2002;91(5):3421–3430. DOI:10.1063/1.1432482
  • Ciuchi F, Mazzulla A, Carbone G, et al. Complex structures of surface relief induced by holographic recording in azo-dye-doped elastomer thin films. Macromolecules. 2003;36(15):5689–5693. DOI:10.1021/ma021772d
  • Ivanov M, Rochon P. Infrared-laser-induced periodic surface structure in azo-dye polymer. Appl Phys Lett. 2004;84(22):4511–4513.
  • Yu H, Okano K, Shishido A, et al. Enhancement of surface-relief gratings recorded on amphiphilic liquid-crystalline diblock copolymer by nanoscale phase separation. Adv Mater. 2005;17(18):2184–2188. DOI:10.1002/adma.200500346
  • Oliveira ON, Dos Santos DS, Balogh DT, et al. Optical storage and surface-relief gratings in azobenzene-containing nanostructured films. Adv Colloid Interface Sci. 2005;116(1–3):179–192. DOI:10.1016/j.cis.2005.05.008
  • Ubukata T, Isoshima T, Hara M. Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system. Adv Mater. 2005;17(13):1630–1633.
  • Kim DY, Tripathy SK, Li L, et al. Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl Phys Lett. 1995;66(10):1166. DOI:10.1063/1.113845
  • You F, Paik MY, Häckel M, et al. Control and suppression of surface relief gratings in liquid-crystalline perfluoroalkyl–azobenzene polymers. Adv Funct Mater. 2006;16(12):1577–1581. DOI:10.1002/adfm.200500711
  • Ubukata T, Isoshima T, Hara M. Wavelength programmable organic distributed feedback laser using a photoinduced surface relief grating. Mol Cryst Liq Cryst. 2006;445(1):[269/[559]–273/[563].
  • He Y, Yin J, Che P, et al. Epoxy-based polymers containing methyl-substituted azobenzene chromophores and photoinduced surface relief gratings. Eur Polym J. 2006;42(2):292–301. DOI:10.1016/j.eurpolymj.2005.07.019
  • Yager KG, Barrett CJ. Photomechanical surface patterning in azo-polymer materials. Macromolecules. 2006;39(26):9320–9326.
  • Kulikovska O, Goldenberg LM, Kulikovsky L, et al. Smart ionic sol−gel-based azobenzene materials for optical generation of microstructures. Chem Mater. 2008;20(10):3528–3534. DOI:10.1021/cm800106x
  • Gao J, He Y, Liu F, et al. Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings. Chem Mater. 2007;19(16):3877–3881. DOI:10.1021/cm0707197
  • Yu H, Naka Y, Shishido A, et al. Well-defined liquid-crystalline diblock copolymers with an azobenzene moiety: synthesis, photoinduced alignment and their holographic properties. Macromolecules. 2008;41(21):7959–7966. DOI:10.1021/ma801077g
  • Lee S, Jeong YC, Park JK. Unusual surface reliefs from photoinduced creeping and aggregation behavior of azopolymer. Appl Phys Lett. 2008;93(3):031912.
  • Guo M, Xu Z, Wang X. Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films. Langmuir. 2008;24(6):2740–2745.
  • He Y, Gu X, Guo M, et al. Dendritic azo compounds as a new type amorphous molecular material with quick photoinduced surface-relief-grating formation ability. Opt Mater. 2008;31(1):18–27. DOI:10.1016/j.optmat.2008.01.003
  • Rochon P, Batalla E, Natansohn A. Optically induced surface gratings on azoaromatic polymer films. Appl Phys Lett. 1995;136(2):136.
  • Lev B, Chernyshuk SB, Yamamoto T, et al. Photochemical switching between colloidal photonic crystals at the nematic-air interface. Phys Rev E. 2008;78(2):020701. DOI:10.1103/PhysRevE.78.020701
  • Zhang Y, Zhang W, Chen X, et al. Synthesis of novel three-arm star azo side-chain liquid crystalline polymer via ATRP and photoinduced surface relief gratings. J Polym Sci Part A. 2008;46(3):777–789. DOI:10.1002/pola.22423
  • Zhang Q, Wang X, Barrett CJ, et al. Spacer-free ionic dye−polyelectrolyte complexes: influence of molecular structure on liquid crystal order and photoinduced motion. Chem Mater. 2009;21(14):3216–3227. DOI:10.1021/cm900810r
  • Goldenberg LM, Kulikovsky L, Kulikovska O, et al. New materials with detachable azobenzene: effective, colourless and extremely stable surface relief gratings. J Mater Chem. 2009;19(43):8068–8071. DOI:10.1039/b918130j
  • Vapaavuori J, Priimagi A, Kaivola M. Photoinduced surface-relief gratings in films of supramolecular polymer–bisazobenzene complexes. J Mater Chem. 2010;20(25):5260–5264.
  • Yin J, Ye G, Wang X. Self-structured surface patterns on molecular azo glass films induced by laser light irradiation. Langmuir. 2010;26(9):6755–6761.
  • Ambrosio A, Maddalena P, Carella A, et al. Two-photon induced self-structuring of polymeric films based on Y-shape azobenzene chromophore. J Phys Chem C. 2011;115(28):13566–13570. DOI:10.1021/jp200050h
  • Schuh C, Lomadze N, Rühe J, et al. Photomechanical degrafting of azo-functionalized poly(methacrylic acid) (PMAA) brushes. J Phys Chem B. 2011;115(35):10431–10438. DOI:10.1021/jp2041229
  • Lomadze N, Kopyshev A, Rühe J, et al. Light-induced chain scission in photosensitive polymer brushes. Macromolecules. 2011;44(18):7372–7377. DOI:10.1021/ma201016q
  • Wang X, Yin J, Wang X. Photoinduced self-structured surface pattern on a molecular azo glass film: structure–property relationship and wavelength correlation. Langmuir. 2011;27(20):12666–12676.
  • Barrett CJ, Natansohn AL, Rochon PL. Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films. J Phys Chem. 1996;100(21):8836–8842.
  • Wang X, Yin J, Wang X. Self-structured surface patterns on epoxy-based azo polymer films induced by laser light irradiation. Macromolecules. 2011;44(17):6856–6867.
  • Ahmed R, Priimagi A, Faul CFJ, et al. Redox-active, organometallic surface-relief gratings from azobenzene-containing polyferrocenylsilane block copolymers. Adv Mater. 2012;24(7):926–931. DOI:10.1002/adma.201103793
  • Ambrosio A, Marrucci L, Borbone F, et al. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination. Nat Commun. 2012;3(1):989. DOI:10.1038/ncomms1996
  • Jacquart A, Morin E, Yang F, et al. Influence of extrinsic and intrinsic parameters onto the formation of surface relief gratings in polar azo molecular glasses. Dyes Pigm. 2012;92:790–797.
  • Priimagi A, Cavallo G, Forni A, et al. Halogen bonding versus hydrogen bonding in driving self-assembly and performance of light-responsive supramolecular polymers. Adv Funct Mater. 2012;22(12):2572–2579. DOI:10.1002/adfm.201200135
  • Priimagi A, Saccone M, Cavallo G, et al. Photoalignment and surface-relief-grating formation are efficiently combined in low-molecular-weight halogen-bonded complexes. Adv Mater. 2012;24(44):345–352. DOI:10.1002/adma.201204060
  • Koskela JE, Vapaavuori J, Hautala J, et al. Surface-relief gratings and stable birefringence inscribed using light of broad spectral range in supramolecular polymer-bisazobenzene complexes. J Phys Chem C. 2012;116(3):2363–2370. DOI:10.1021/jp210706n
  • Schab-Balcerzak E, Sobolewska A, Stumpe J, et al. Surface relief gratings in azobenzene supramolecular systems based on polyimides. Opt Mater. 2012;35(2):155–167. DOI:10.1016/j.optmat.2012.07.029
  • Ishikawa D, Ito E, Han M, et al. Effect of the steric molecular structure of azobenzene on the formation of self-assembled monolayers with a photoswitchable surface morphology. Langmuir. 2013;29(14):4622–4631. DOI:10.1021/la302552v
  • Ambrosio A, Maddalena P, Marrucci L. Molecular model for light-driven spiral mass transport in azopolymer films. Phys Rev Lett. 2013;110(14):1–5.
  • Darracq B, Chaput F, Lahlil K, et al. Photoinscription of surface relief gratings on azo-hybrid gels. Adv Mater. 1998;10(14):1133–1136. DOI:10.1002/(SICI)1521-4095(199810)10:14<1133:AID-ADMA1133>3.0.CO;2-F
  • Vapaavuori J, Priimagi A, Soininen AJ, et al. Photoinduced surface patterning of azobenzene-containing supramolecular dendrons, dendrimers and dendronized polymers. Opt Mater Express. 2013;3(6):711. DOI:10.1364/OME.3.000711
  • Yadavalli NS, Linde F, Kopyshev A, et al. Soft matter beats hard matter: rupturing of thin metallic films induced by mass transport in photosensitive polymer films. ACS Appl Mater Interfaces. 2013;5(16):7743–7747. DOI:10.1021/am400682w
  • König T, Tsukruk VV, Santer S. Controlled topography change of subdiffraction structures based on photosensitive polymer films induced by surface plasmon polaritons. ACS Appl Mater Interfaces. 2013;5(13):6009–6016.
  • Tomczyk J, Sobolewska A, Nagy ZT, et al. Photo- and thermal-processing of azobenzene-containing star-shaped liquid crystals. J Mater Chem C. 2013;1(5):924–932. DOI:10.1039/C2TC00627H
  • Florio GD, Bründermann E, Yadavalli NS, et al. Graphene multilayer as nanosized optical strain gauge for polymer surface relief gratings. Nano Lett. 2014;14(10):5754–5760. DOI:10.1021/nl502631s
  • Koskela JE, Vapaavuori J, Ras RHA, et al. Light-driven surface patterning of supramolecular polymers with extremely low concentration of photoactive molecules. ACS Macro Lett. 2014;3(11):1196–1200. DOI:10.1021/mz500616q
  • Wei R, Xu Z, Wang X. Epoxy-based azo polymer for photofabricating surface-relief quasi-crystal structures. Opt Mater Express. 2015;5(6):1348.
  • Kopyshev A, Galvin CJ, Patil RR, et al. Light-induced reversible change of roughness and thickness of photosensitive polymer brushes. ACS Appl Mater Interfaces. 2016;8(29):19175–19184. DOI:10.1021/acsami.6b06881
  • Wang X, Vapaavuori J, Wang X, et al. Influence of supramolecular interaction type on photoresponsive azopolymer complexes: a surface relief grating formation study. Macromolecules. 2016;49(13):4923–4934. DOI:10.1021/acs.macromol.6b01009
  • Bedrov D, Hooper JB, Glaser MA, et al. Photoinduced and thermal relaxation in surface-grafted azobenzene-based monolayers: a molecular dynamics simulation study. Langmuir. 2016;32(16):4004–4015. DOI:10.1021/acs.langmuir.6b00120
  • Pedersen TG, Johansen PM, Holme NCR, et al. Mean-field theory of photoinduced formation of surface reliefs in side-chain azobenzene polymers. Phys Rev Lett. 1998;80(1):89–92. DOI:10.1103/PhysRevLett.80.89
  • Frascella F, Angelini A, Ricciardi S, et al. Surface-relief formation in azo-polyelectrolyte layers with a protective polymer coating. Opt Mater Express. 2016;6(2):444. DOI:10.1364/OME.6.000444
  • Kim CB, Wistrom JC, Ha H, et al. Marangoni instability driven surface relief grating in an azobenzene-containing polymer film. Macromolecules. 2016;49(18):7069–7076. DOI:10.1021/acs.macromol.6b01848
  • Noga J, Sobolewska A, Bartkiewicz S, et al. Periodic surface structures induced by a single laser beam irradiation. Macromol Mater Eng. 2017;302(2):1600329. DOI:10.1002/mame.201600329
  • Lomadze N, Kopyshev A, Bargheer M, et al. Mass production of polymer nano-wires filled with metal nano-particles. Sci Rep. 2017;7(1):8506. DOI:10.1038/s41598-017-08153-0
  • Hendrikx M, Ter Schiphorst J, van Heeswijk EPA, et al. Re- and preconfigurable multistable visible light responsive surface topographies. Small. 2018;14(50):1803274. DOI:10.1002/smll.201803274
  • Vapaavuori J, Bazuin CG, Priimagi A. Supramolecular design principles for efficient photoresponsive polymer–azobenzene complexes. J Mater Chem C. 2018;6(9):2168–2188.
  • Oscurato SL, Salvatore M, Borbone F, et al. Computer-generated holograms for complex surface reliefs on azopolymer films. Sci Rep. 2019;9(1):6775. DOI:10.1038/s41598-019-43256-w
  • Kim K, Park H, Park KJ, et al. Light-directed soft mass migration for micro/nanophotonics. Adv Opt Mater. 2019;7(16):1900074. DOI:10.1002/adom.201900074
  • Jelken J, Santer S. Light induced reversible structuring of photosensitive polymer films. RSC Adv. 2019;9(35):20295–20305.
  • Kumar J, Li L, Jiang XL, et al. Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers. Appl Phys Lett. 1998;72:2096–2098.
  • Vapaavuori J, Stimpson TC, Moran-Mirabal JM. Dynamically evolving surface patterns through light-triggered wrinkling erasure. Langmuir. 2019;35(4):875–881.
  • Spiridon MC, Demazy N, Brochon C, et al. Optical alignment of Si-containing nanodomains formed by photoresponsive amorphous block copolymer thin films. Macromolecules. 2020;53(1):68–77. DOI:10.1021/acs.macromol.9b01551
  • Salvatore M, Borbone F, Oscurato SL. Deterministic realization of quasicrystal surface relief gratings on thin azopolymer films. Adv Mater Interfaces. 2020;7(11):1902118.
  • Miniewicz A, Sobolewska A, Piotrowski W, et al. Thermocapillary marangoni flows in azopolymers. Materials. 2020;13(11):2464. DOI:10.3390/ma13112464
  • Chen J, Xu T, Zhao W, et al. Photoresponsive thin films of well-synthesized azobenzene side-chain liquid crystalline polynorbornenes as command surface for patterned graphic writing. Polymer. 2021;218:123492.
  • Feng W, Chu L, de Rooij MB, et al. Photoswitching between water-tolerant adhesion and swift release by inverting liquid crystal fingerprint topography. Adv Sci. 2021;8(8):2004051. DOI:10.1002/advs.202004051
  • Bian S, Li L, Kumar J, et al. Single laser beam-induced surface deformation on azobenzene polymer films. Appl Phys Lett. 1998;73:1817–1819.
  • Viswanathan NK, Balasubramanian S, Li L, et al. Surface-initiated mechanism for the formation of relief gratings on azo-polymer films. J Phys Chem B. 1998;102(31):6064–6070. DOI:10.1021/jp981425z
  • Fong WK, Malic N, Evans RA, et al. Alkylation of spiropyran moiety provides reversible photo-control over nanostructured soft materials. Biointerphases. 2012;7(1):3–7. DOI:10.1007/s13758-011-0003-9
  • Ito M, Ubukata T. Photoconstruction of a microrelief in a photochromic crystalline spirooxazine film. Chem Lett. 2019;48(1):32–35.
  • Mele E, Pisignano D, Varda M, et al. Smart photochromic gratings with switchable wettability realized by green-light interferometry. Appl Phys Lett. 2006;88(20):203124. DOI:10.1063/1.2198509
  • Ubukata T, Takahashi K, Yokoyama Y. Photoinduced surface relief structures formed on polymer films doped with photochromic spiropyrans. J Phys Org Chem. 2007;20(11):981–984.
  • Ubukata T, Fujii S, Arimatsu K, et al. Phototriggered micromanufacturing using photoresponsive amorphous spirooxazine films. J Mater Chem. 2012;22(29):14410–14417. DOI:10.1039/c2jm32149a
  • Ubukata T, Yamaguchi S, Yokoyama Y. Photoinduced surface relief structures formed on polymer films mixed with diarylethenes. Chem Lett. 2007;36(10):1224–1225.
  • Kikuchi A, Harada Y, Yagi M, et al. Photoinduced diffusive mass transfer in o-Cl-HABI amorphous thin films. Chem Commun. 2010;46(13):2262–2264. DOI:10.1039/b919180a
  • Park JW, Nagano S, Yoon SJ, et al. High contrast fluorescence patterning in cyanostilbene-based crystalline thin films: crystallization-induced mass flow via a photo-triggered phase transition. Adv Mater. 2014;26(9):1354–1359. DOI:10.1002/adma.201304250
  • Zhao D, Xu Z, Wang G, et al. Formation of surface relief gratings with homeotropically oriented photopolymer from a photocross-linkable organic monomer. Phys Chem Chem Phys. 2010;12(7):1436–1439. DOI:10.1039/B919659E
  • Ono H, Emoto A, Kawatsuki N, et al. Self-organized phase gratings in photoreactive polymer liquid crystals. Appl Phys Lett. 2003;82(9):1359–1361. DOI:10.1063/1.1557327
  • Ono H, Hatayama A, Emoto A, et al. Migration induced reorientation and anisotropic grating formation in photoreactive polymer liquid crystals. Opt Mater. 2007;30(2):248–254. DOI:10.1016/j.optmat.2006.11.048
  • Emoto A, Matsumoto T, Yamashita A, et al. Large birefringence and polarization holographic gratings formed in photocross-linkable polymer liquid crystals comprising bistolane mesogenic side groups. J Appl Phys. 2009;106(7):073505. DOI:10.1063/1.3234385
  • Kawatsuki N, Matsushita H, Kondo M, et al. Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups. APL Mater. 2013;1(2):022103. DOI:10.1063/1.4818003
  • Okano K, Ogino S, Kawamoto M, et al. Mass migration on a polymer surface caused by photoinduced molecular rotation. Chem Commun. 2011;47(43):11891–11893. DOI:10.1039/c1cc14375a
  • Ubukata T, Seki T, Ichimura K. Surface relief gratings in host-guest supramolecular materials. Adv Mater. 2000;12(22):1675–1678.
  • Zettsu N, Ubukata T, Seki T, et al. Soft crosslinkable azo polymer for rapid surface relief formation and persistent fixation. Adv Mater. 2001;13(22):1693–1697. DOI:10.1002/1521-4095(200111)13:22<1693:AID-ADMA1693>3.0.CO;2-2
  • Zettsu N, Ogasawara T, Arakawa R, et al. Highly photosensitive surface relief gratings formation in a liquid crystalline azobenzene polymer: new implications for the migration process. Macromolecules. 2007;40:4607–4613.
  • Zettsu N, Ogasawara T, Mizoshita N, et al. Photo-triggered surface relief grating formation in supramolecular liquid crystalline polymer systems with detachable azobenzene units. Adv Mater. 2008;20(3):516–521. DOI:10.1002/adma.200701110
  • Nishizawa K, Nagano S, Seki T. Novel liquid crystalline organic−inorganic hybrid for highly sensitive photoinscriptions. Chem Mater. 2009;21(13):2624–2631.
  • Nishizawa K, Nagano S, Seki T. Micropatterning of titanium oxide film via phototactic mass transport. J Mater Chem. 2009;19(39):7191–7194.
  • Li W, Nagano S, Seki T. Photo-crosslinkable liquid-crystalline azo-polymer for surface relief gratings and persistent fixation. New J Chem. 2009;33(6):1343–1348.
  • Isayama J, Nagano S, Seki T. Phototriggered mass migrating motions in liquid crystalline azobenzene polymer films with systematically varied thermal properties. Macromolecules. 2010;43(9):4105–4112.
  • Li W, Dohi T, Hara M, et al. Phototriggered mass migration consorted with surface dewetting in thin films of a liquid crystalline azobenzene-containing dendrimer. Macromolecules. 2012;45(16):6618–6627. DOI:10.1021/ma301170x
  • Seki T. Meso- and microscopic motions in photoresponsive liquid crystalline polymer films. Macromol Rapid Commun. 2014;35:271–290.
  • Mitsui S, Nagano S, Hara M, et al. SRG inscription in supramolecular liquid crystalline polymer film: replacement of mesogens. Crystals. 2017;7(2):52. DOI:10.3390/cryst7020052
  • Beppu K, Nagashima Y, Hara M, et al. Photoalignment of vertically oriented microphase separated lamellae in LC–LC diblock copolymer thin film. Macromol Rapid Commun. 2017;38(13):1600659. DOI:10.1002/marc.201600659
  • Zettsu N, Ubukata T, Seki T, et al. Azo polymers with oligo(ethylene oxide) side chain for rapid surface relief formation. J Photopolym Sci Technol. 2001;14(2):193–194. DOI:10.2494/photopolymer.14.193
  • Kitamura I, Oishi K, Hara M, et al. Photoinitiated marangoni flow morphing in a liquid crystalline polymer film directed by super-inkjet printing patterns. Sci Rep. 2019;9(1):2556. DOI:10.1038/s41598-019-38709-1
  • Kitamura I, Kato K, Berk RB, et al. Photo-triggered large mass transport driven only by a photoresponsive surface skin layer. Sci Rep. 2020;10(1):12664. DOI:10.1038/s41598-020-69605-8
  • Yamakado R, Kitamura I, Hara M, et al. Photoisomerization-induced patterning of ion-pairing materials based on anionic azobenzene and its complex with a fluorescent π-electronic system. Chem Commun. 2021;57(35):4287–4290. DOI:10.1039/D0CC07640F
  • Zhang D, Liu D, Ubukata T, et al. Unconventional approaches to light-promoted dynamic surface morphing on polymer films. Bull Chem Soc Jpn. 2022;95(1):138–162. DOI:10.1246/bcsj.20210348
  • Ubukata T, Seki T, Ichimura K. Surface relief grating in hybrid films composed of azobenzene polymer and liquid crystal molecule. Colloids Surf A Physicochem Eng Asp. 2002;198–200:113–117.
  • Ubukata T, Hara M, Seki T. Photogeneration of surface relief gratings in azobenzene polymer/liquid crystal hybrid films. Mol Cryst Liq Cryst. 2002;377(1):173–176.
  • Ubukata T, Hara M, Ichimura K, et al. Phototactic mass transport in polymer films for micropatterning and alignment of functional materials. Adv Mater. 2004;16(3):220–223. DOI:10.1002/adma.200305535
  • Zettsu N, Ubukata T, Seki T. Two-dimensional manipulation of poly(3-dodecylthiophene) using light-driven instant mass migration as a molecular conveyer. Japanese J Appl Physics. 2004;43(No. 9A/B):L1169–1171. Part 2 Lett. DOI:10.1143/JJAP.43.L1169.
  • Zettsu N, Seki T. Highly efficient photogeneration of surface relief structure and its immobilization in cross-linkable liquid crystalline azobenzene polymers. Macromolecules. 2004;37(23):8692–8698.
  • Ubukata T, Higuchi T, Zettsu N, et al. Spontaneous motion observed in highly sensitive surface relief formation system. Colloids Surf A Physicochem Eng Asp. 2005;257-258:123–126.
  • Seki T. Photoresponsive self-assembly motions in polymer thin films. Curr Opin Solid State Mater Sci. 2006;10(5–6):241–248.
  • Kopyshev A, Kanevche K, Lomadze N, et al. Light-induced structuring of photosensitive polymer brushes. ACS Appl Polym Mater. 2019;1(11):3017–3026. DOI:10.1021/acsapm.9b00705
  • Yoneyama S, Yamamoto T, Tsutsumi O, et al. High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence. Macromolecules. 2002;35(23):8751–8758. DOI:10.1021/ma020886m
  • Yamamoto T, Hasegawa M, Kanazawa A, et al. Holographic gratings and holographic image storage via photochemical phase transitions of polymer azobenzene liquid-crystal films. J Mater Chem. 2000;10(2):337–342. DOI:10.1039/a905501k
  • Yamamoto T, Yoneyama S, Tsutsumi O, et al. Holographic gratings in the optically isotropic state of polymer azobenzene liquid-crystal films. J Appl Phys. 2000;88(5):2215–2220. DOI:10.1063/1.1287761
  • Shishido A, Ishiguro M, Ikeda T. Circular arrangement of mesogens induced in Bragg-type polarization holograms of thick azobenzene copolymer films with a tolane moiety. Chem Lett. 2007;36(9):1146–1147.
  • Ishiguro M, Sato D, Shishido A, et al. Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties. Langmuir. 2007;23(1):332–338. DOI:10.1021/la061587j
  • Bang CU, Shishido A, Ikeda T. Azobenzene liquid-crystalline polymer for optical switching of grating waveguide couplers with a flat surfacea. Macromol Rapid Commun. 2007;28(9):1040–1044.
  • Ikeda T, Yoneyama S, Yamamoto T, et al. Holographic grating by means of polymer liquid crystals. J Inf Disp. 2001;2(3):6–12. DOI:10.1080/15980316.2001.9651860
  • Hasegawa M, Yamamoto T, Kanazawa A, et al. Real-time holographic grating by means of photoresponsive polymer liquid crystals with a flexible siloxane spacer in the side chain. J Mater Chem. 1999;9(11):2765–2769. DOI:10.1039/a903948a
  • Hasegawa M, Yamamoto T, Kanazawa A, et al. A dynamic grating using a photochemical phase transition of polymer liquid crystals containing azobenzene derivatives. Adv Mater. 1999;11(8):675–677. DOI:10.1002/(SICI)1521-4095(199906)11:8<675:AID-ADMA675>3.0.CO;2-Z
  • Yamamoto T, Hasegawa M, Kanazawa A, et al. Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals: enhancement of diffraction efficiency by spatial modulation of molecular alignment. J Phys Chem B. 1999;103(45):9873–9878. DOI:10.1021/jp992172s
  • Tsutsumi O, Ikeda T. Photochemical modulation of alignment of liquid crystals and photonic applications. Curr Opin Solid State Mater Sci. 2002;6(6):563–568.
  • Shishido A, Cha H-B, Ikeda T. Rewritable bragg holograms of azobenzene polymers with fast response. Liq Cryst. 2009 XIII(7414):74140S.
  • Ishii N, Kato T, Abe J. A real-time dynamic holographic material using a fast photochromic molecule. Sci Rep. 2012;2(1):819.
  • Kobayashi Y, Abe J. Real-time dynamic hologram of a 3D object with fast photochromic molecules. Adv Opt Mater. 2016;4(9):1354–1357.
  • Wang H, Pumera M. Fabrication of micro/nanoscale motors. Chem Rev. 2015;115(16):8704–8735.
  • Tu Y, Peng F, Wilson DA. Motion manipulation of micro- and nanomotors. Adv Mater. 2017;29(39):1701970.
  • Eskandarloo H, Kierulf A, Abbaspourrad A. Light-harvesting synthetic nano- and micromotors: a review. Nanoscale. 2017;9:12218–12230.
  • Xu L, Mou F, Gong H, et al. Light-driven micro/nanomotors: from fundamentals to applications. Chem Soc Rev. 2017;46(22):6905–6926. DOI:10.1039/C7CS00516D
  • Kuwahara Y, Oda T, Kim S, et al. Photo-responsive traveling of small-particles modified with azobenzene groups as molecular motors in a liquid crystal. Mater Lett. 2016;181:257–260.
  • Uchida E, Azumi R, Norikane Y. Light-induced crawling of crystals on a glass surface. Nat Commun. 2015;6(1):7310.
  • Nakano H. Direction control of photomechanical bending of a photochromic molecular fiber. J Mater Chem. 2010;20(11):2071–2074.
  • Norikane Y, Hayashino M, Ohnuma M, et al. Photo-induced crawling motion of azobenzene crystals on modified gold surfaces. Langmuir. 2021;37(48):14177–14185. DOI:10.1021/acs.langmuir.1c02494
  • Muto M, Ayako Y, Yamamoto K, et al. Photochemical migration of liquid column in a glass tube. Eur Phys J Spec Top. 2017;226(6):1199–1205. DOI:10.1140/epjst/e2016-60217-y
  • Norikane Y, Hayashino M, Ohnuma M, et al. Effect of surface properties on the photo-induced crawling motion of azobenzene crystals on glass surfaces. Front Chem. 2021;9:684767.
  • Suzuki M, Nakano H. Moving fragments of photochromic molecuar glass of 4-[bis(9,9-dimethylfluoren-2-yl)amino]-4′-cyanoazobenzene. J Photopolym Sci Technol. 2012;25(2):159–160.
  • Lin G, Richardson JJ, Ahmed H, et al. Programmable phototaxis of metal–phenolic particle microswimmers. Adv Mater. 2021;33(13):2006177. DOI:10.1002/adma.202006177
  • Nakano H, Suzuki M. Photoinduced mass flow of photochromic molecular materials. J Mater Chem. 2012;22(9):3702–3704.
  • Ichikawa R, Nakano H. Photoinduced change in the shape of azobenzene-based molecular glass particles fixed in agar gel. RSC Adv. 2016;6(43):36761–36765.
  • Matsubara M, Ukai H, Kuragano M, et al. Chiral photomechanical behavior of achiral azobenzene-based molecular glass particles fixed in agar gel. Chem Lett. 2022;51(5):493–496. DOI:10.1246/cl.220054
  • Liu GL, Kim J, Lu YU, et al. Optofluidic control using photothermal nanoparticles. Nat Mater. 2006;5(1):27–32. DOI:10.1038/nmat1528
  • Kaneko S, Asakura K, Banno T. Phototactic behavior of self-propelled micrometer-sized oil droplets in a surfactant solution. Chem Commun. 2017;53(14):2237–2240.
  • Nitta K, Tsukahara T. Numerical demonstration of in-tube liquid-column migration driven by photoisomerization. Micromach. 2018;9(10):533.
  • Eelkema R, Pollard MM, Katsonis N, et al. Rotational reorganization of doped cholesteric liquid crystalline films. J Am Chem Soc. 2006;128(44):14397–14407. DOI:10.1021/ja065334o
  • Kausar A, Nagano H, Okada S, et al. Micro manipulation with optical responsive cholesteric and compensated nematic liquid crystal. Mol Cryst Liq Cryst. 2009;513(1):122–130. DOI:10.1080/15421400903196112
  • Mafy NN, Kim Y, Thomas R, et al. Molecular crankshaft effect converting piston-like molecular motion to continuous rotation of macro objects. ACS Appl Mater Interfaces. 2019;11(16):15097–15102. DOI:10.1021/acsami.9b03706
  • Kim Y, Mafy NN, Maisonneuve S, et al. Glycomacrocycle-based azobenzene derivatives as chiral dopants for photoresponsive cholesteric liquid crystals. ACS Appl Mater Interfaces. 2020;12(46):52146–52155. DOI:10.1021/acsami.0c14880
  • Eelkema R, Pollard MM, Vicario J, et al. Nanomotor rotates microscale objects. Nature. 2006;440(7081):163. DOI:10.1038/440163a
  • Tamaoki N, Kamei T. Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds. J Photochem Photobiol C Photochem Rev. 2010;11(2–3):47–61.
  • Jau HC, Lin TH, Chen YY, et al. Direction switching and beam steering of cholesteric liquid crystal gratings. Appl Phys Lett. 2012;100(13):131909. DOI:10.1063/1.3698384
  • Thomas R, Yoshida Y, Akasaka T, et al. Influence of a change in helical twisting power of photoresponsive chiral dopants on rotational manipulation of micro-objects on the surface of chiral nematic liquid crystalline films. Chem - A Eur J. 2012;18(39):12337–12348. DOI:10.1002/chem.201200836
  • Ma S, Kuwahara Y, Nagano H, et al. Photo-controlled manipulation of micrometer-scale objects on polyethyleneglycol thin films with azobenzene compounds. Mol Cryst Liq Cryst. 2014;601(1):126–133. DOI:10.1080/15421406.2014.944382
  • Kim Y, Tamaoki N. A photoresponsive planar chiral azobenzene dopant with high helical twisting power. J Mater Chem C. 2014;2(43):9258–9264.
  • Kim Y, Tamaoki N. Asymmetric dimers of chiral azobenzene dopants exhibiting unusual helical twisting power upon photoswitching in cholesteric liquid crystals. ACS Appl Mater Interfaces. 2016;8(7):4918–4926.
  • Wu ZL, Wang ZJ, Keller P, et al. Light responsive microstructured surfaces of liquid crystalline network with shape memory and tunable wetting behaviors. Macromol Rapid Commun. 2016;37(4):311–317. DOI:10.1002/marc.201500533
  • Kim Y, Frigoli M, Vanthuyne N, et al. A helical naphthopyran dopant for photoresponsive cholesteric liquid crystals. Chem Commun. 2017;53(1):200–203. DOI:10.1039/C6CC08667E
  • Mathews M, Tamaoki N. Planar chiral azobenzenophanes as chiroptic switches for photon mode reversible reflection color control in induced chiral nematic liquid crystals. J Am Chem Soc. 2008;130(34):11409–11416.
  • Li Y, Li Q. Photochemically reversible and thermally stable axially chiral diarylethene switches. Org Lett. 2012;14(17):4362–4365.
  • Kausar A, Nagano H, Kuwahara Y, et al. Photocontrolled manipulation of a microscale object: a rotational or translational mechanism. Chem Eur J. 2011;17(2):508–515. DOI:10.1002/chem.201001238
  • Ichimura K, Oh S-K, Nakagawa M. Light-driven motion of liquids on a photoresponsive surface. Science. 2000;288:1624–1626.
  • Oh SK, Nakagawa M, Ichimura K. Photocontrol of liquid motion on an azobenzene monolayer. J Mater Chem. 2002;12(8):2262–2269.
  • Monobe H, Ohzono T, Akiyama H, et al. Manipulation of liquid filaments on photoresponsive microwrinkles. ACS Appl Mater Interfaces. 2012;4(4):2212–2217. DOI:10.1021/am300225m
  • Zhu F, Tan S, Dhinakaran MK, et al. The light-driven macroscopic directional motion of a water droplet on an azobenzene–calix[4]arene modified surface. Chem Commun. 2020;56(74):10922–10925. DOI:10.1039/D0CC00519C
  • De Jong E, Kremer R, Liu L, et al. Mechanowetting drives droplet and fluid transport on traveling surface waves generated by light-responsive liquid crystal polymers. Phys Fluids. 2021;33(6):063307. DOI:10.1063/5.0050864
  • Yamamoto T, Yamamoto J, Lev BI, et al. Light-induced assembly of tailored droplet arrays in nematic emulsions. Appl Phys Lett. 2002;81(12):2187–2189. DOI:10.1063/1.1508816
  • Diguet A, Guillermic RM, Magome N, et al. Photomanipulation of a droplet by the chromocapillary effect. Angew Chem Int Ed. 2009;48(49):9281–9284. DOI:10.1002/anie.200904868
  • Kausar A, Nagano H, Ogata T, et al. Photocontrolled translational motion of a microscale solid object on azobenzene-doped liquid-crystalline films. Angew Chem Int Ed. 2009;48(12):2144–2147. DOI:10.1002/anie.200804762
  • Varanakkottu SN, George SD, Baier T, et al. Particle manipulation based on optically controlled free surface hydrodynamics. Angew Chem Int Ed. 2013;52(28):7291–7295. DOI:10.1002/anie.201302111
  • Kavokine N, Anyfantakis M, Morel M, et al. Light-driven transport of a liquid marble with and against surface flows. Angew Chem Int Ed. 2016;55(37):11183–11187. DOI:10.1002/anie.201603639
  • Rossegger E, Hennen D, Griesser T, et al. Directed motion of water droplets on multi-gradient photopolymer surfaces. Polym Chem. 2019;10(15):1882–1893. DOI:10.1039/C9PY00123A
  • Xia J, Zhao P, Zheng K, et al. Surface modification based on diselenide dynamic chemistry: towards liquid motion and surface bioconjugation. Angew Chem. 2018;310036:552–556.
  • Berná J, Leigh DA, Lubomska M, et al. Macroscopic transport by synthetic molecular machines. Nat Mater. 2005;4(9):704–710. DOI:10.1038/nmat1455
  • Monteleone FV, Caputo G, Canale C, et al. Light-controlled directional liquid drop movement on TiO2 nanorods-based nanocomposite photopatterns. Langmuir. 2010;26(23):18557–18563. DOI:10.1021/la1026398
  • Rossegger E, Nees D, Turisser S, et al. Photo-switching of surface wettability on micropatterned photopolymers for fast transport of water droplets over a long-distance. Polym Chem. 2020;11(18):3125–3135. DOI:10.1039/D0PY00263A
  • Xu B, Zhu C, Qin L, et al. Light-directed liquid manipulation in flexible bilayer microtubes. Small. 2019;15(24):1901847. DOI:10.1002/smll.201901847
  • Liu Q, Yu G, Zhu C, et al. An Integrated droplet manipulation platform with photodeformable microfluidic channels. Small Methods. 2021;5(12):2100969. DOI:10.1002/smtd.202100969
  • Ji S, Cao W, Yu Y, et al. Dynamic diselenide bonds: exchange reaction induced by visible light without catalysis. Angew Chem Int Ed. 2014;53(26):6781–6785. DOI:10.1002/anie.201403442
  • Ji S, Xia J, Xu H. Dynamic chemistry of selenium: Se–N and Se–Se dynamic covalent bonds in polymeric systems. ACS Macro Lett. 2016;5(1):78–82.
  • Xia J, Ji S, Xu H. Diselenide covalent chemistry at the interface: stabilizing an asymmetric diselenide-containing polymer via micelle formation. Polym Chem. 2016;7(44):6708–6713.
  • Voloshchenko D, Khyzhnyak A, Reznikov Y, et al. Control of an easy axis on a nematic-polymer interface by a light action to a nematic bulk. Jpn J Appl Phys. 1995;34(Part 1, No. 2A):566. DOI:10.1143/JJAP.34.566
  • Slussarenko S, Francescangeli O, Simoni F, et al. High resolution polarization gratings in liquid crystals. Appl Phys Lett. 1997;71(25):3613–3615. DOI:10.1063/1.120457
  • Simoni F, Francescangeli O, Reznikov Y, et al. Dye-doped liquid crystals as high-resolution recording media: errata. Opt Lett. 1997;22(12):937. DOI:10.1364/OL.22.000937
  • Francescangeli O, Slussarenko S, Simoni F, et al. Light-induced surface sliding of the nematic director in liquid crystals. Phys Rev Lett. 1999;82(9):1855–1858. DOI:10.1103/PhysRevLett.82.1855
  • Simoni F, Francescangeli O. Effects of light on molecular orientation of liquid crystals. J Phys Condens Matter. 1999;11(41):439–487.
  • Motevalli B, Taherifar N, Wu B, et al. A density functional theory computational study of adsorption of di-meta-cyano azobenzene molecules on Si (111) surfaces. Appl Surf Sci. 2017;422:557–565.
  • Komitov L, Ruslim C, Matsuzawa Y, et al. Photoinduced anchoring transitions in a nematic doped with azo dyes. Liq Cryst. 2000;27(8):1011–1016. DOI:10.1080/02678290050080733
  • Komitov L, Ichimura K, Strigazzi A. Light-induced anchoring transition in a 4,4’-disubstituted azobenzene nematic liquid crystal. Liq Cryst. 2000;27(1):51–55.
  • Ruslim C, Komitov L, Matsuzawa Y, et al. Effect of conformations of trans- and cis-azobenzenes on photoinduced anchoring transitions in a nematic liquid crystal. Japanese J Appl Physics. 2000;39(Part 2, No. 2A):L104–106. Part 2 Lett:
  • Lee C-H, Chen C-H, Kao C-L, et al. Photo and electrical tunable effects in photonic liquid crystal fiber. Opt Express. 2010;18(3):2814. DOI:10.1364/OE.18.002814
  • Ouskova E, Vapaavuori J, Kaivola M. Self-orienting liquid crystal doped with polymer-azo-dye complex. Opt Mater Express. 2011;1(8):1463.
  • Yang K-Y, Lee W. Voltage-assisted photoaligning effect of an azo dye doped in a liquid crystal with negative dielectric anisotropy. Opt Express. 2010;18(19):19914.
  • Shen Y, Xu Y-C, Ge Y-H, et al. Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures. Opt Express. 2018;26(2):1422. DOI:10.1364/OE.26.001422
  • Lee CR, Fu TL, Cheng KT, et al. Surface-assisted photoalignment in dye-doped liquid-crystal films. Phys Rev E. 2004;69(3):031704. DOI:10.1103/PhysRevE.69.031704
  • Chen CH, Lee CH, Lin TH. Loss-reduced photonic liquid-crystal fiber by using photoalignment method. Appl Opt. 2010;49(26):4846–4850.
  • Fuh A-G, Liao C-C, Hsu K-C, et al. Laser-induced reorientation effect and ripple structure in dye-doped liquid-crystal films. Opt Lett. 2003;28(14):1179. DOI:10.1364/OL.28.001179
  • Lee CR, Mo TS, Cheng KT, et al. Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films. Appl Phys Lett. 2003;83(21):4285–4287. DOI:10.1063/1.1629374
  • Chen WZ, Tsai YT, Lin TH. Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye. Appl Phys Lett. 2009;94(20):201114.
  • Fuh AYG, Chen JC, Huang SY, et al. Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application. Appl Phys Lett. 2010;96(5):2008–2011. DOI:10.1063/1.3299268
  • Wu WY, Fuh AYG. Rewritable liquid crystal gratings fabricated using photoalignment effect in dye-doped poly(vinyl alcohol) film. Jpn J Appl Phys. 2007;46(10A):6761–6766.
  • Khoo IC, Wood M, Shih MY, et al. Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection. Opt Express. 1999;4(11):432. DOI:10.1364/OE.4.000432
  • Lin TH, Jau HC, Hung SY, et al. Photoaddressable bistable reflective liquid crystal display. Appl Phys Lett. 2006;89(2):021116. DOI:10.1063/1.2219406
  • Lin L-C, Jau H-C, Lin T-H, et al. Highly efficient and polarization-independent fresnel lens based on dye-doped liquid crystal. Opt Express. 2007;15(6):2900–2906. DOI:10.1364/OE.15.002900
  • Khoo IC, Shih M-Y, Wood MV, et al. Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation. Proc IEEE. 1999;87(11):1897–1911. DOI:10.1109/5.796353
  • Wang C-T, Jau H-C, Lin T-H. Optically controllable bistable reflective liquid crystal display. Opt Lett. 2012;37(12):2370.
  • Huang SY, Wu ST, Fuh AYG. Optically switchable twist nematic grating based on a dye-doped liquid crystal film. Appl Phys Lett. 2006;88(4):041104.
  • Wu W-Y, Mo T-S, Fuh A-G. Polarization characteristics of diffracted beams from twisted nematic gratings fabricated by the photoalignment effect in dye-doped liquid-crystal films. J Opt Soc Am B. 2006;23(9):1737.
  • Fuh A-G, Chen J-C, Cheng K-T, et al. Polarization-independent and electrically tunable liquid-crystal fresnel lenses based on photoalignment in dye-doped liquid crystals. J Soc Inf Disp. 2010;18(8):572. DOI:10.1889/JSID18.8.572
  • Huang Y, Ko S, Chu S, et al. High-efficiency fresnel lens fabricated by axially symmetric photoalignment method. Appl Opt. 2012;51(32):7739–7744. DOI:10.1364/AO.51.007739
  • Okabe Y, Ogawa M. Photoinduced adsorption of spiropyran into mesoporous silicas as photomerocyanine. RSC Adv. 2015;5(123):101789–101793.
  • Yamaguchi T, Maity A, Polshettiwar V, et al. Photochromism of a spiropyran in the presence of a dendritic fibrous nanosilica; simultaneous photochemical reaction and adsorption. J Phys Chem A. 2017;121(42):8080–8085. DOI:10.1021/acs.jpca.7b08466
  • Yamaguchi T, Leelaphattharaphan NN, Shin H, et al. Acceleration of photochromism and negative photochromism by the interactions with mesoporous silicas. Photochem Photobiol Sci. 2019;18(7):1742–1749. DOI:10.1039/C9PP00081J
  • Yamaguchi T, Ogawa M. Photochromism of a spiropyran in the presence of a synthetic hectorite. Chem Lett. 2018;47(2):189–191.
  • Leelaphattharaphan NN, Deepracha SB, Yamaguchi T, et al. Adsorption of a spiropyran on a layered clay mineral. IOP Conf Ser Earth Environ Sci. 2022;950(1):012041. DOI:10.1088/1755-1315/950/1/012041
  • Colaço M, Carletta A, Van Gysel M, et al. Direct access by mechanochemistry or sonochemistry to protonated merocyanines: components of a four-state molecular switch. ChemistryOpen. 2018;7(7):520–526. DOI:10.1002/open.201800082
  • Wang Y, Li B, Zhang L, et al. Targeted delivery system based on magnetic mesoporous silica nanocomposites with light-controlled release character. ACS Appl Mater Interfaces. 2013;5(1):11–15. DOI:10.1021/am302492e
  • Angelos S, Choi E, Vögtle F, et al. Photo-driven expulsion of molecules from mesostructured silica nanoparticles. J Phys Chem C. 2007;111(18):6589–6592. DOI:10.1021/jp070721l
  • Lu J, Choi E, Tamanoi F, et al. Light-activated nanoimpeller-controlled drug release in cancer cells. Small. 2008;4(4):421–426. DOI:10.1002/smll.200700903
  • Liu J, Bu W, Pan L, et al. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew Chem Int Ed. 2013;52(16):4375–4379. DOI:10.1002/anie.201300183
  • Duan Y, Wang Y, Li X, et al. Light-triggered nitric oxide (NO) release from photoresponsive polymersomes for corneal wound healing. Chem Sci. 2020;11(1):186–194. DOI:10.1039/C9SC04039K
  • Nehls EM, Rosales AM, Anseth KS. Enhanced user-control of small molecule drug release from a poly(ethylene glycol) hydrogel via azobenzene/cyclodextrin complex tethers. J Mater Chem B. 2016;4(6):1035–1039.
  • Huang Q, Bao C, Ji W, et al. Photocleavable coumarin crosslinkers based polystyrene microgels: phototriggered swelling and release. J Mater Chem. 2012;22(35):18275–18282. DOI:10.1039/c2jm33789d
  • Wang Z, Johns VK, Liao Y. Controlled release of fragrant molecules with visible light. Chem - A Eur J. 2014;20(45):14637–14640.
  • Jin Q, Mitschang F, Agarwal S. Biocompatible drug delivery system for photo-triggered controlled release of 5-fluorouracil. Biomacromolecules. 2011;12(10):3684–3691.
  • Wang H, Miao W, Wang F, et al. A self-assembled coumarin-anchored dendrimer for efficient gene delivery and light-responsive drug delivery. Biomacromolecules. 2018;19(6):2194–2201. DOI:10.1021/acs.biomac.8b00246
  • Tan X, Li BB, Lu X, et al. Light-triggered, self-immolative nucleic acid-drug nanostructures. J Am Chem Soc. 2015;137(19):6112–6115. DOI:10.1021/jacs.5b00795
  • Bozuyuk U, Yasa O, Yasa IC, et al. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano. 2018;12(9):9617–9625. DOI:10.1021/acsnano.8b05997
  • Zang C, Wang H, Li T, et al. A light-responsive, self-immolative linker for controlled drug delivery via peptide- and protein-drug conjugates. Chem Sci. 2019;10(39):8973–8980. DOI:10.1039/C9SC03016F
  • Pei P, Sun C, Tao W, et al. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials. 2019;188:74–82.
  • Cui D, Huang J, Zhen X, et al. A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic cancer therapy. Angew Chem Int Ed. 2019;58(18):5920–5924. DOI:10.1002/anie.201814730
  • Wu C, Chen C, Lai J, et al. Molecule-scale controlled-release system based on light-responsive silica nanoparticles. Chem Commun. 2008;23(23):2662–2664. DOI:10.1039/b804886j
  • Pelliccioli AP, Wirz J. Photoremovable protecting groups: reaction mechanisms and applications. Photochem Photobiol Sci. 2002;1(7):441–458.
  • Peng K, Tomatsu I, Kros A. Light controlled protein release from a supramolecular hydrogel. Chem Commun. 2010;46(23):4094–4096.
  • Pianowski ZL, Karcher J, Schneider K. Photoresponsive self-healing supramolecular hydrogels for light-induced release of DNA and doxorubicin. Chem Commun. 2016;52(15):3143–3146.
  • Liu XM, Yang B, Wang YL, et al. Photoisomerisable cholesterol derivatives as photo-trigger of liposomes: effect of lipid polarity, temperature, incorporation ratio, and cholesterol. Biochim Biophys Acta - Biomembr. 2005;1720(1–2):28–34. DOI:10.1016/j.bbamem.2005.10.016
  • Liu YC, Ny ALML, Schmidt J, et al. Photo-assisted gene delivery using light-responsive catanionic vesicles. Langmuir. 2009;25(10):5713–5724. DOI:10.1021/la803588d
  • Hu XY, Jia K, Cao Y, et al. Dual photo- and pH-responsive supramolecular nanocarriers based on water-soluble pillar[6]arene and different azobenzene derivatives for intracellular anticancer drug delivery. Chem - A Eur J. 2015;21(3):1208–1220. DOI:10.1002/chem.201405095
  • Liu H, Liu Y, Shang Y, et al. Molecular dynamics simulation for drug delivery in azobenzene-containing membranes. Mol Simul. 2020;46(4):300–307. DOI:10.1080/08927022.2019.1699655
  • Ishihara K, Negishi N, Shinohara I. Photoregulated binding ability of azoaromatic polymer for surfactant. J Polym Sci. 1981;19(12):3039–3046.
  • Ishihara K, Negishi N, Shinohara I. Photocontrolled adsorption chromatography for lysozyme using azoaromatic polymer. J Appl Polym Sci. 1982;27(6):1897–1902.
  • Kanj AB, Bürck J, Grosjean S, et al. Switching the enantioselectivity of nanoporous host materials by light. Chem Commun. 2019;55(60):8776–8779. DOI:10.1039/C9CC02849H
  • Ishihara K, Kato S, Shinohara I. Separation of proteins by polymeric adsorbents containing azobenzene moiety as a ligand. J Appl Polym Sci. 1982;27(11):4273–4282.
  • Wang Z, Grosjean S, Bräse S, et al. Photoswitchable adsorption in metal-organic frameworks based on polar guest-host interactions. Chemphyschem. 2015;16:3779–3783.
  • Puntoriero F, Ceroni P, Balzani V, et al. Photoswitchable dendritic hosts: a dendrimer with peripheral azobenzene groups. J Am Chem Soc. 2007;129(35):10714–10719. DOI:10.1021/ja070636r
  • Park J, Sun LB, Chen YP, et al. Azobenzene-functionalized metal-organic polyhedra for the optically responsive capture and release of guest molecules. Angew Chem Int Ed. 2014;53(23):5842–5846. DOI:10.1002/anie.201310211
  • Nakahara Y, Okazaki Y, Kimura K. Self-assembling phenomena of benzo-18-crown-6/crowned-spirobenzopyran copolymers in aqueous solution and controlled release of entrapped organic dyes using external stimuli. Soft Matter. 2012;8:3192–3199.
  • Wang X, Hu J, Liu G, et al. Reversibly switching bilayer permeability and release modules of photochromic polymersomes stabilized by cooperative noncovalent interactions. J Am Chem Soc. 2015;137(48):15262–15275. DOI:10.1021/jacs.5b10127
  • Chen S, Gao Y, Cao Z, et al. Nanocomposites of spiropyran-functionalized polymers and upconversion nanoparticles for controlled release stimulated by near-infrared light and pH. Macromolecules. 2016;49(19):7490–7496. DOI:10.1021/acs.macromol.6b01760
  • Müller K, Wadhwa J, Singh Malhi J, et al. Photoswitchable nanoporous films by loading azobenzene in metal–organic frameworks of type HKUST-1. Chem Commun. 2017;53(57):8070–8073. DOI:10.1039/C7CC00961E
  • Alvaro M, Benitez M, Das D, et al. Reversible porosity changes in photoresponsive azobenzene-containing periodic mesoporous silicas. Chem Mater. 2005;17:4958–4964.
  • Brown JW, Henderson BL, Kiesz MD, et al. Photophysical pore control in an azobenzene-containing metal-organic framework. Chem Sci. 2013;4:2858–2864.
  • Wang Z, Heinke L, Jelic J, et al. Photoswitching in nanoporous, crystalline solids: an experimental and theoretical study for azobenzene linkers incorporated in MOFs. Phys Chem Chem Phys. 2015;17(22):14582–14587. DOI:10.1039/C5CP01372K
  • Müller K, Knebel A, Zhao F, et al. Switching thin films of azobenzene-containing metal–organic frameworks with visible light. Chem Eur J. 2017;23(23):5434–5438. DOI:10.1002/chem.201700989
  • Zhang L, Wang LL, Le GL, et al. Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of UVI ions. J Hazard Mater. 2016;311:30–36.
  • Mal NK, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature. 2003;421(6921):350–353.
  • Mal NK, Fujiwara M, Tanaka Y, et al. Photo-switched storage and release of guest molecules in the pore void of coumarin-modified MCM-41. Chem Mater. 2003;15(17):3385–3394. DOI:10.1021/cm0343296
  • Chen L, Wang W, Su B, et al. A light-responsive release platform by controlling the wetting behavior of hydrophobic surface. ACS Nano. 2014;8(1):744–751. DOI:10.1021/nn405398d
  • Xing Q, Li N, Chen D, et al. Light-responsive amphiphilic copolymer coated nanoparticles as nanocarriers and real-time monitors for controlled drug release. J Mater Chem B. 2014;2(9):1182–1189. DOI:10.1039/c3tb21269f
  • Heinke L, Cakici M, Dommaschk M, et al. Photoswitching in two-component surface-mounted metal–organic frameworks: optically triggered release from a molecular container. ACS Nano. 2014;8(2):1463–1467. DOI:10.1021/nn405469g
  • Meng X, Gui B, Yuan D, et al. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. Sci Adv. 2016;2(8):2–8. DOI:10.1126/sciadv.1600480
  • Mutruc D, Goulet-Hanssens A, Fairman S, et al. Modulating guest uptake in core–shell MOFs with visible light. Angew Chem Int Ed. 2019;58(37):12862–12867. DOI:10.1002/anie.201906606
  • Ou R, Zhang H, Zhao C, et al. Photoresponsive styrylpyrene-modified MOFs for gated loading and release of cargo molecules. Chem Mater. 2020;32(24):10621–10627. DOI:10.1021/acs.chemmater.0c03726
  • Zhu Y, Fujiwara M. Installing dynamic molecular photomechanics in mesopores: a multifunctional controlled-release nanosystem. Angew Chem Int Ed. 2007;46(13):2241–2244.
  • Ji W, Li N, Chen D, et al. Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. J Mater Chem B. 2013;1(43):5942–5949. DOI:10.1039/c3tb21206h
  • Yuan Q, Zhang Y, Chen T, et al. Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS Nano. 2012;6(7):6337–6344. DOI:10.1021/nn3018365
  • Yan H, Teh C, Sreejith S, et al. Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo. Angew Chem Int Ed. 2012;51(33):8373–8377. DOI:10.1002/anie.201203993
  • Wang D, Wu S. Red-light-responsive supramolecular valves for photocontrolled drug release from mesoporous nanoparticles. Langmuir. 2016;32(2):632–636.
  • Li M, Yan H, Teh C, et al. NIR-triggered drug release from switchable rotaxane-functionalized silica-covered Au nanorods. Chem Commun. 2014;50(68):9745–9748. DOI:10.1039/C4CC02966F
  • Cheng L, Jiang Y, Yan N, et al. Smart adsorbents with photoregulated molecular gates for both selective adsorption and efficient regeneration. ACS Appl Mater Interfaces. 2016;8(35):23404–23411. DOI:10.1021/acsami.6b07853
  • Zhang Z, Balogh D, Wang F, et al. Light-induced and redox-triggered uptake and release of substrates to and from mesoporous SiO2 nanoparticles. J Mater Chem B. 2013;1(25):3159. DOI:10.1039/c3tb20292e
  • Aznar E, Oroval M, Pascual L, et al. Gated materials for on-command release of guest molecules. Chem Rev. 2016;116(2):561–718. DOI:10.1021/acs.chemrev.5b00456
  • Wu MX, Yang YW. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater. 2017;29(23):1606134.
  • Nakata S, Miyaji T, Matsuda Y, et al. Mode switching of a self-propelled camphor disk sensitive to the photoisomerization of a molecular layer on water. Langmuir. 2014;30(25):7353–7357. DOI:10.1021/la5016803
  • Nakata S, Nasu K, Irie Y, et al. Self-propelled motion of a camphor disk on a photosensitive amphiphilic molecular layer. Langmuir. 2019;35(12):4233–4237. DOI:10.1021/acs.langmuir.8b04285
  • Matsuda Y, Suematsu NJ, Nakata S. Photo-sensitive self-motion of a BQ disk. Phys Chem Chem Phys. 2012;14:5988–5991.
  • Norikane Y, Tanaka S, Uchida E. Azobenzene crystals swim on water surface triggered by light. Cryst Eng Comm. 2016;18(38):7225–7228.
  • Yucknovsky A, Rich BB, Westfried A, et al. Self-propulsion of droplets via light-stimuli rapid control of their surface tension. Adv Mater Interfaces. 2021;8(22):2100751. DOI:10.1002/admi.202100751
  • Liu CW, Hsu CP, Yeh JA, et al. Light-actuated water droplet motions on ZnO nanorods. Microsyst Technol. 2013;19(2):245–251. DOI:10.1007/s00542-012-1562-5
  • Li W, Lei Y, Chen R, et al. Light-caused droplet bouncing from a cavity trap-assisted superhydrophobic surface. Langmuir. 2020;36(37):11068–11078. DOI:10.1021/acs.langmuir.0c02062
  • Wu Z, Lin X, Wu Y, et al. Near-infrared light-triggered “on/off” motion of polymer multilayer rockets. ACS Nano. 2014;8(6):6097–6105. DOI:10.1021/nn501407r
  • Xuan M, Wu Z, Shao J, et al. Near infrared light-powered Janus mesoporous silica nanoparticlemotors. J Am Chem Soc. 2016;138(20):6492–6497. DOI:10.1021/jacs.6b00902
  • Uda M, Kawashima H, Mayama H, et al. Locomotion of a nonaqueous liquid marble induced by near-infrared-light irradiation. Langmuir. 2021;37(14):4172–4182. DOI:10.1021/acs.langmuir.1c00041
  • Gao C, Wang L, Lin Y, et al. Droplets manipulated on photothermal organogel surfaces. Adv Funct Mater. 2018;28(35):1803072. DOI:10.1002/adfm.201803072
  • Dai B, Wang J, Xiong Z, et al. Programmable artificial phototactic microswimmer. Nat Nanotechnol. 2016;11(12):1087–1092. DOI:10.1038/nnano.2016.187
  • Wu S, Zhou L, Chen C, et al. Photothermal actuation of diverse liquids on an Fe3O4-doped slippery surface for electric switching and cell culture. Langmuir. 2019;35(43):13915–13922. DOI:10.1021/acs.langmuir.9b02068
  • Yilmaz M, Kuloglu HB, Erdogan H, et al. Light-driven unidirectional liquid motion on anisotropic gold nanorod arrays. Adv Mater Interfaces. 2015;2(12):1500226. DOI:10.1002/admi.201500226
  • Chen C, Mou F, Xu L, et al. Light-steered isotropic semiconductor micromotors. Adv Mater. 2017;29(3):1603374. DOI:10.1002/adma.201603374
  • Wu Y, Si T, Lin X, et al. Near infrared-modulated propulsion of catalytic janus polymer multilayer capsule motors. Chem Commun. 2015;51(3):511–514. DOI:10.1039/C4CC07182D
  • Geng H, Zhou K, Zhou J, et al. Sunlight-driven water transport via a reconfigurable pump. Angew Chem Int Ed. 2018;57(47):15435–15440. DOI:10.1002/anie.201808835
  • Ge F, Yang R, Tong X, et al. A multifunctional dye-doped liquid crystal polymer actuator: light-guided transportation, turning in locomotion, and autonomous motion. Angew Chem Int Ed. 2018;57(36):11758–11763. DOI:10.1002/anie.201807495
  • Lv X, Wang W, Yu H. A bioinspired photothermal pneumatic device enabling optical manipulation of microfluid toward precise control of microreactions. Adv Eng Mater. 2019;21(12):1900977.
  • Ren Y, Qi H, Chen Q, et al. Optofluidic control using light illuminated plasmonic nanostructure as microvalve. Int J Heat Mass Transf. 2019;133:1019–1025.
  • Yu Y, Nakano M, Ikeda T. Directed bending of a polymer film by light. Nature. 2003;425(6954):145.
  • Miyasaka H, Matsuda K, Abe J, et al. Photosynergetic responses in molecules and molecular aggregates. 1st ed. Miyasaka H, Matsuda K Abe J, editors. Singapore: Springer Singapore; 2020.
  • Tang X, Wang L. Loss-free photo-manipulation of droplets by pyroelectro-trapping on superhydrophobic surfaces. ACS Nano. 2018;12(9):8994–9004.
  • Li W, Tang X, Wang L. Photopyroelectric microfluidics. Sci Adv. 2020;6(38):1693.