1,257
Views
0
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

A solvent-compatible filter-transfer method of semi-transparent carbon-nanotube electrodes stacked with silver nanowires

, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 783-795 | Received 02 Sep 2022, Accepted 26 Oct 2022, Published online: 24 Nov 2022

References

  • Yamada T, Fukuhara K, Matsuoka K, et al. Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution. Nat Commun. 2016;7(1):11402.
  • Zhang L, Song T, Shi L, et al. Recent progress for silver nanowires conducting film for flexible electronics. J Nanostructure Chem. 2021;11(3):323–341.
  • Shah KW, Xiong T. Multifunctional metallic nanowires in advanced building applications. Materials. 2019;12(11):1731.
  • Jeong HI, Biswas S, Yoon SC, et al. Rational design of highly efficient semi‐transparent organic photovoltaics with silver nanowire top electrode via 3D optical simulation study. Adv Energy Mater. 2021;11(47):2102397.
  • Gahlmann T, Brinkmann KO, Becker T, et al. Impermeable charge transport layers enable aqueous processing on top of perovskite solar cells. Adv Energy Mater. 2020;10(10):1903897.
  • Xie M, Lu H, Zhang L, et al. Fully solution‐processed semi‐transparent perovskite solar cells with ink‐jet printed silver nanowires top electrode. Sol RRL. 2018;2(2):1700184.
  • Lee M, Ko Y, Min BK, et al. Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate. Chem Sus Chem. 2016;9(1):31–35.
  • Li Y. Carbon nanotube research in its 30th year. ACS Nano. 2021;15(6):9197–9200.
  • Hwang J, Shim Y, Yoon S-M, et al. Influence of polyvinylpyrrolidone (PVP) capping layer on silver nanowire networks: theoretical and experimental studies. RSC Adv. 2016;6(37):30972–30977.
  • Luo Q, Wu R, Ma L, et al. Recent advances in carbon nanotube utilizations in perovskite solar cells. Adv Funct Mater. 2021;31(6):2004765.
  • Lee K, H-D U, Choi D, et al. The development of transparent photovoltaics. Cell Rep Phys Sci. 2020;1(8):100143.
  • Zhang D, Huang T, Duan L. Emerging self-emissive technologies for flexible displays. Adv Mater. 2020;32(15):1902391.
  • Wang T, Lu K, Xu Z, et al. Recent developments in flexible transparent electrode. Crystals. 2021;11(5):511.
  • Lu X, Zhang Y, Zheng Z. Metal‐based flexible transparent electrodes: challenges and recent advances. Adv Electron Mater. 2021;7(5):2001121.
  • Singh M, Rana S. Silver and copper nanowire films as cost-effective and robust transparent electrode in energy harvesting through photovoltaic: a review. Mater Today Commun. 2020;24:101317.
  • Goak JC, Kim TY, Kim DU, et al. Stable heating performance of carbon nanotube/silver nanowire transparent heaters. Appl Surf Sci. 2020;510:145445.
  • Lee J, Woo JY, Kim JT, et al. Synergistically enhanced stability of highly flexible silver nanowire/carbon nanotube hybrid transparent electrodes by plasmonic welding. ACS Appl Mater Interfaces. 2014;6(14):10974–10980.
  • Lee P, Ham J, Lee J, et al. Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv Funct Mater. 2014;24(36):5671–5678.
  • Stapleton AJ, Afre RA, Ellis AV, et al. Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes. Sci Technol Adv Mater. 2013;14(3):035004.
  • Tokuno T, Nogi M, Jiu J, et al. Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process. Nanoscale Res Lett. 2012;7(1):281.
  • Li X, Jung Y, Huang J-S, et al. Device area scale-up and improvement of SWNT/Si solar cells using silver nanowires. Adv Energy Mater. 2014;4(12):1400186.
  • Wadhwa P, Liu B, McCarthy MA, et al. Electronic junction control in a nanotube-semiconductor schottky junction solar cell. Nano Lett. 2010;10(12):5001–5005.
  • Li X, Jung Y, Sakimoto K, et al. Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy Environ Sci. 2013;6(3):879–887.
  • Jung Y, Li X, Rajan NK, et al. Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett. 2013;13(1):95–99.
  • Muramoto E, Yamasaki Y, Wang F, et al. Carbon nanotube–silicon heterojunction solar cells with surface-textured Si and solution-processed carbon nanotube films. RSC Adv. 2016;6(96):93575–93581.
  • Tune DD, Flavel BS. Advances in carbon nanotube-silicon heterojunction solar cells. Adv Energy Mater. 2018;8(15):1703241.
  • Hu X, Hou P, Liu C, et al. Carbon nanotube/silicon heterojunctions for photovoltaic applications. Nano Mater Sci. 2019;1(3):156–172.
  • Tune DD, Mallik N, Fornasier H, et al. Breakthrough carbon nanotube–silicon heterojunction solar cells. Adv Energy Mater. 2020;10(1):1903261.
  • Xie R, Ishijima N, Sugime H, et al. Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process. Sci Rep. 2019;9(1):12051.
  • Chen J, Tune DD, Ge K, et al. Front and back‐junction carbon nanotube‐silicon solar cells with an industrial architecture. Adv Funct Mater. 2020;30(17):2000484.
  • Grace TSL, Gibson CT, Gascooke JR, et al. The use of gravity filtration of carbon nanotubes from suspension to produce films with low roughness for carbon nanotube/silicon heterojunction solar device application. Appl Sci. 2020;10(18):6415.
  • Huang X, Xie R, Sugime H, et al. Performance enhancement of carbon nanotube/silicon solar cell by solution processable MoOx. Appl Surf Sci. 2021;542(15):148682.
  • Xie R, Sugime H, Noda S. High-performance solution-based silicon heterojunction solar cells using carbon nanotube with polymeric acid doping. Carbon. 2021;175:519–524.
  • Xu W, Wu S, Li X, et al. High-efficiency large-area carbon nanotube-silicon solar cells. Adv Energy Mater. 2016;6(12):1600095.
  • Huang X, Hara E, Sugime H, et al. Carbon nanotube/silicon heterojunction solar cell with an active area of 4 cm2 realized using a multifunctional molybdenum oxide layer. Carbon. 2021;185:215–223.
  • Jeon I, Seo S, Sato Y, et al. Perovskite solar cells using carbon nanotubes both as cathode and as anode. J Phys Chem C. 2017;121(46):25743–25749.
  • Zhou C, Lin S. Carbon‐electrode based perovskite solar cells: effect of bulk engineering and interface engineering on the power conversion properties. Sol RRL. 2020;4(2):1900190.
  • Ferguson V, Silva SR, Zhang W. Carbon materials in perovskite solar cells: prospects and future challenges. Energy Environ Mater. 2019;2(2):107–118.
  • Yang Y, Liu Z, K NW, et al. An ultrathin ferroelectric perovskite oxide layer for high-performance hole transport material free carbon based halide perovskite solar cells. Adv Funct Mater. 2019;29(1):1806506.
  • Jeon I, Shawky A, Seo S, et al. Carbon nanotubes to outperform metal electrodes in perovskite solar cells via dopant engineering and hole-selectivity enhancement. J Mater Chem A. 2020;8(22):11141–11147.
  • Seo S, Akino K, Nam J-S, et al. Multi‐functional MoO3 doping of carbon‐nanotube top electrodes for highly transparent and efficient semi‐transparent perovskite solar cells. Adv Mater Interfaces. 2022;9(11):2101595.
  • Song Z, Li C, Chen L, et al. Perovskite solar cells go bifacial—mutual benefits for efficiency and durability. Adv Mater. 2022;34(4):2106805.
  • Chen J-J, Liu S-L, H-B W, et al. Structural regulation of silver nanowires and their application in flexible electronic thin films. Mater Des. 2018;154:266–274.
  • Mustonen K, Susi T, Kaskela A, et al. Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films. Beilstein J Nanotechnol. 2012;3:692–702.
  • Qian Y, Jeon I, Y-L H, et al. Multifunctional effect of p ‐doping, antireflection, and encapsulation by polymeric acid for high efficiency and stable carbon nanotube‐based silicon solar cells. Adv Energy Mater. 2020;10(1):1902389.
  • X-G H, Hou P-X, Liu C, et al. Small-bundle single-wall carbon nanotubes for high-efficiency silicon heterojunction solar cells. Nano Energy. 2018;50:521–527.
  • Wang F, Kozawa D, Miyauchi Y, et al. Fabrication of single-walled carbon nanotube/si heterojunction solar cells with high photovoltaic performance. ACS Photonics. 2014;1(4):360–364.
  • Ishizaki M, Satoh D, Ando R, et al. Solution‐processed chemically non‐destructive filter transfer of carbon‐nanotube thin films onto arbitrary materials. Adv Mater Interfaces. 2021;8(22):2100953.
  • Shirae H, Kim DY, Hasegawa K, et al. Overcoming the quality–quantity tradeoff in dispersion and printing of carbon nanotubes by a repetitive dispersion–extraction process. Carbon. 2015;91:20–29.
  • Shi Z, Chen X, Wang X, et al. Fabrication of superstrong ultrathin free-standing single-walled carbon nanotube films via a wet process. Adv Funct Mater. 2011;21(22):4358–4363.
  • Wu Z, Chen Z, Du X, et al. Transparent, conductive carbon nanotube films. Science. 2004;305(5688):1273–1276.
  • Graupner R, Abraham J, Vencelová A, et al. Doping of single-walled carbon nanotube bundles by Brønsted acids. Phys Chem Chem Phys. 2003;5(24):5472–5476.
  • Tey JN, Ho X, Wei J. Effect of doping on single-walled carbon nanotubes network of different metallicity. Nanoscale Res Lett. 2012;7(1):548.
  • Kaskela A, Nasibulin AG, Timmermans MY, et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010;10(11):4349–4355.
  • Wang P-C, Liao Y-C, Lai Y-L, et al. Conversion of pristine and p-doped sulfuric-acid-treated single-walled carbon nanotubes to n-type materials by a facile hydrazine vapor exposure process. Mater Chem Phys. 2012;134(1):325–332.
  • Svanström S, Jacobsson TJ, Boschloo G, et al. Degradation mechanism of silver metal deposited on lead halide perovskites. ACS Appl Mater Interfaces. 2020;12(6):7212–7221.